Rapid reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery

Ai Fujita, Natsuki Ishibe, Tatsuya Yoshihara, Jun Ohashi, Hideichi Makino, Mizuko Ikeda, Hidekazu Setoguchi

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Objective Sugammadex rapidly reverses neuromuscular blockade (NMB) induced by rocuronium. NMB induced by rocuronium is prolonged in patients with liver dysfunction, because the drug is mainly excreted into the bile. However, the efficacy and safety of sugammadex in terms of reversing rocuronium-induced NMB in patients with liver dysfunction undergoing hepatic surgery have not been evaluated. This observational study investigated the efficacy and safety of sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Methods Remifentanil/propofol anesthesia was administered to 31 patients: 15 patients in the control group, and 16 patients from a group with liver dysfunction. Rocuronium (0.6 mg/kg) was administered, followed by continuous infusion. The enrolled patients were then subdivided into two groups according to the dose of sugammadex. In the first group a single dose of sugammadex (2.0 mg/kg) was given at the reappearance of the second twitch (T2). In the second group a single dose of sugammadex (4.0 mg/kg) was given at the first twitch response if T2 did not reappear in 15 minutes after stopping rocuronium. The primary outcome was time from administration of sugammadex to recovery of a train-of-four ratio to 0.9. Results The dose of rocuronium required in the liver dysfunction group was lower than that in the control group (6.2 vs. 8.2 μg/kg/min, p = 0.002). The mean time from the administration of sugammadex to recovery of the train-of-four ratio to 0.9 was not significantly different between the liver dysfunction group and the control group (2.2 minutes vs. 2.0 minutes in the 2 mg/kg administration group, p = 0.44 and 1.9 minutes vs. 1.7 minutes in the 4 mg/kg administration group, p = 0.70, respectively). No evidence of recurarization was observed in any of the patients. Most of the adverse events were found to be mild and such events were not related to the use of sugammadex. None of the patients was eliminated from the study because of an adverse event. One patient died due to cholestatic liver cirrhosis because of repeated hepatic surgery. Conclusion Sugammadex can rapidly reverse NMB after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Sugammadex was found to be safe and well tolerated. However, further studies of sugammadex under similar conditions should be conducted involving a large number of patients with liver dysfunction undergoing hepatic surgery.

Original languageEnglish
Pages (from-to)54-58
Number of pages5
JournalActa Anaesthesiologica Taiwanica
Volume52
Issue number2
DOIs
Publication statusPublished - Jun 2014

Fingerprint

Neuromuscular Blockade
Liver Diseases
Liver
Control Groups
Sugammadex
rocuronium
Safety
Propofol
Bile
Liver Cirrhosis
Observational Studies
Anesthesia

All Science Journal Classification (ASJC) codes

  • Anesthesiology and Pain Medicine

Cite this

Rapid reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. / Fujita, Ai; Ishibe, Natsuki; Yoshihara, Tatsuya; Ohashi, Jun; Makino, Hideichi; Ikeda, Mizuko; Setoguchi, Hidekazu.

In: Acta Anaesthesiologica Taiwanica, Vol. 52, No. 2, 06.2014, p. 54-58.

Research output: Contribution to journalArticle

@article{a901fbedc89849a092ea797c823373fd,
title = "Rapid reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery",
abstract = "Objective Sugammadex rapidly reverses neuromuscular blockade (NMB) induced by rocuronium. NMB induced by rocuronium is prolonged in patients with liver dysfunction, because the drug is mainly excreted into the bile. However, the efficacy and safety of sugammadex in terms of reversing rocuronium-induced NMB in patients with liver dysfunction undergoing hepatic surgery have not been evaluated. This observational study investigated the efficacy and safety of sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Methods Remifentanil/propofol anesthesia was administered to 31 patients: 15 patients in the control group, and 16 patients from a group with liver dysfunction. Rocuronium (0.6 mg/kg) was administered, followed by continuous infusion. The enrolled patients were then subdivided into two groups according to the dose of sugammadex. In the first group a single dose of sugammadex (2.0 mg/kg) was given at the reappearance of the second twitch (T2). In the second group a single dose of sugammadex (4.0 mg/kg) was given at the first twitch response if T2 did not reappear in 15 minutes after stopping rocuronium. The primary outcome was time from administration of sugammadex to recovery of a train-of-four ratio to 0.9. Results The dose of rocuronium required in the liver dysfunction group was lower than that in the control group (6.2 vs. 8.2 μg/kg/min, p = 0.002). The mean time from the administration of sugammadex to recovery of the train-of-four ratio to 0.9 was not significantly different between the liver dysfunction group and the control group (2.2 minutes vs. 2.0 minutes in the 2 mg/kg administration group, p = 0.44 and 1.9 minutes vs. 1.7 minutes in the 4 mg/kg administration group, p = 0.70, respectively). No evidence of recurarization was observed in any of the patients. Most of the adverse events were found to be mild and such events were not related to the use of sugammadex. None of the patients was eliminated from the study because of an adverse event. One patient died due to cholestatic liver cirrhosis because of repeated hepatic surgery. Conclusion Sugammadex can rapidly reverse NMB after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Sugammadex was found to be safe and well tolerated. However, further studies of sugammadex under similar conditions should be conducted involving a large number of patients with liver dysfunction undergoing hepatic surgery.",
author = "Ai Fujita and Natsuki Ishibe and Tatsuya Yoshihara and Jun Ohashi and Hideichi Makino and Mizuko Ikeda and Hidekazu Setoguchi",
year = "2014",
month = "6",
doi = "10.1016/j.aat.2014.04.007",
language = "English",
volume = "52",
pages = "54--58",
journal = "Asian Journal of Anesthesiology",
issn = "2468-824X",
publisher = "Elsevier Taiwan LLC",
number = "2",

}

TY - JOUR

T1 - Rapid reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery

AU - Fujita, Ai

AU - Ishibe, Natsuki

AU - Yoshihara, Tatsuya

AU - Ohashi, Jun

AU - Makino, Hideichi

AU - Ikeda, Mizuko

AU - Setoguchi, Hidekazu

PY - 2014/6

Y1 - 2014/6

N2 - Objective Sugammadex rapidly reverses neuromuscular blockade (NMB) induced by rocuronium. NMB induced by rocuronium is prolonged in patients with liver dysfunction, because the drug is mainly excreted into the bile. However, the efficacy and safety of sugammadex in terms of reversing rocuronium-induced NMB in patients with liver dysfunction undergoing hepatic surgery have not been evaluated. This observational study investigated the efficacy and safety of sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Methods Remifentanil/propofol anesthesia was administered to 31 patients: 15 patients in the control group, and 16 patients from a group with liver dysfunction. Rocuronium (0.6 mg/kg) was administered, followed by continuous infusion. The enrolled patients were then subdivided into two groups according to the dose of sugammadex. In the first group a single dose of sugammadex (2.0 mg/kg) was given at the reappearance of the second twitch (T2). In the second group a single dose of sugammadex (4.0 mg/kg) was given at the first twitch response if T2 did not reappear in 15 minutes after stopping rocuronium. The primary outcome was time from administration of sugammadex to recovery of a train-of-four ratio to 0.9. Results The dose of rocuronium required in the liver dysfunction group was lower than that in the control group (6.2 vs. 8.2 μg/kg/min, p = 0.002). The mean time from the administration of sugammadex to recovery of the train-of-four ratio to 0.9 was not significantly different between the liver dysfunction group and the control group (2.2 minutes vs. 2.0 minutes in the 2 mg/kg administration group, p = 0.44 and 1.9 minutes vs. 1.7 minutes in the 4 mg/kg administration group, p = 0.70, respectively). No evidence of recurarization was observed in any of the patients. Most of the adverse events were found to be mild and such events were not related to the use of sugammadex. None of the patients was eliminated from the study because of an adverse event. One patient died due to cholestatic liver cirrhosis because of repeated hepatic surgery. Conclusion Sugammadex can rapidly reverse NMB after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Sugammadex was found to be safe and well tolerated. However, further studies of sugammadex under similar conditions should be conducted involving a large number of patients with liver dysfunction undergoing hepatic surgery.

AB - Objective Sugammadex rapidly reverses neuromuscular blockade (NMB) induced by rocuronium. NMB induced by rocuronium is prolonged in patients with liver dysfunction, because the drug is mainly excreted into the bile. However, the efficacy and safety of sugammadex in terms of reversing rocuronium-induced NMB in patients with liver dysfunction undergoing hepatic surgery have not been evaluated. This observational study investigated the efficacy and safety of sugammadex after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Methods Remifentanil/propofol anesthesia was administered to 31 patients: 15 patients in the control group, and 16 patients from a group with liver dysfunction. Rocuronium (0.6 mg/kg) was administered, followed by continuous infusion. The enrolled patients were then subdivided into two groups according to the dose of sugammadex. In the first group a single dose of sugammadex (2.0 mg/kg) was given at the reappearance of the second twitch (T2). In the second group a single dose of sugammadex (4.0 mg/kg) was given at the first twitch response if T2 did not reappear in 15 minutes after stopping rocuronium. The primary outcome was time from administration of sugammadex to recovery of a train-of-four ratio to 0.9. Results The dose of rocuronium required in the liver dysfunction group was lower than that in the control group (6.2 vs. 8.2 μg/kg/min, p = 0.002). The mean time from the administration of sugammadex to recovery of the train-of-four ratio to 0.9 was not significantly different between the liver dysfunction group and the control group (2.2 minutes vs. 2.0 minutes in the 2 mg/kg administration group, p = 0.44 and 1.9 minutes vs. 1.7 minutes in the 4 mg/kg administration group, p = 0.70, respectively). No evidence of recurarization was observed in any of the patients. Most of the adverse events were found to be mild and such events were not related to the use of sugammadex. None of the patients was eliminated from the study because of an adverse event. One patient died due to cholestatic liver cirrhosis because of repeated hepatic surgery. Conclusion Sugammadex can rapidly reverse NMB after continuous infusion of rocuronium in patients with liver dysfunction undergoing hepatic surgery. Sugammadex was found to be safe and well tolerated. However, further studies of sugammadex under similar conditions should be conducted involving a large number of patients with liver dysfunction undergoing hepatic surgery.

UR - http://www.scopus.com/inward/record.url?scp=84904203014&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904203014&partnerID=8YFLogxK

U2 - 10.1016/j.aat.2014.04.007

DO - 10.1016/j.aat.2014.04.007

M3 - Article

C2 - 25016508

AN - SCOPUS:84904203014

VL - 52

SP - 54

EP - 58

JO - Asian Journal of Anesthesiology

JF - Asian Journal of Anesthesiology

SN - 2468-824X

IS - 2

ER -