Reactive solute transport with a variable selectivity coefficient in an undisturbed soil column

Kazuro Momii, Yoshinari Hiroshiro, Kenji Jinno, Ronny Berndtsson

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


The spatial distribution of major ion concentration limits the predictability of solute sport processes in field soils. Therefore, it is important to analyze solute transport with chemical reactions based on results obtained from field soils and numerical simulation. A simulation model with cation-exchange reactions was developed and applied to solute-transport analysis of an undisturbed field soil. Chemical reaction terms in the convective-dispersive equation were estimated by the Levenberg-Marquardt nonlinear least-squares regression technique to satisfy physical stud chemical processes simultaneously. The reliability of the model was tested with liquid-phase and solid-phase concentrations of measured spatial distributions of Ca2+, Mg2+, Na+, and K+ after continuous infiltration of KCl solution into an undisturbed soft column. The experimental results revealed that the selectivity coefficients for Ca-Na and Co-Mg exchange could be kept constant, while those for Ca-K exchange increased with the equivalent fraction of K+ in the solid phase. The effects of the exchange selectivity coefficient on reactive solute transport are discussed based on the simulation results. When a constant selectivity coefficient was used, the model failed to predict the spatial distributions of cation concentrations in the solid phase. Thus, model predictions can be improved by use of variable instead of constant selectivity coefficients.

Original languageEnglish
Pages (from-to)1539-1546
Number of pages8
JournalSoil Science Society of America Journal
Issue number6
Publication statusPublished - Jan 1 1997

All Science Journal Classification (ASJC) codes

  • Soil Science


Dive into the research topics of 'Reactive solute transport with a variable selectivity coefficient in an undisturbed soil column'. Together they form a unique fingerprint.

Cite this