Real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in C3

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We show that the real Seifert form determines the weights for nondegenerate quasihomogeneous polynomials in C3. Consequently the real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in C3. As a corollary, we obtain the topological invariance of weights for nondegenerate quasihomogeneous polynomials in C3, which has already been proved by the author [Sae1] and independently by Xu and Yau [Ya1], [Ya2], [XY1], [XY2]. The method in this paper is totally different from their approaches and gives some new results, as corollaries, about holomorphic function germs in C3 which are connected by μ-constant deformations to nondegenerate quasihomogeneous polynomials. For example, we show that two semiquasihomogeneous functions of three complex variables have the same topological type if and only if they are connected by a μ-constant deformation.

Original languageEnglish
Pages (from-to)409-431
Number of pages23
JournalJournal of the Mathematical Society of Japan
Volume52
Issue number2
DOIs
Publication statusPublished - Jan 1 2000
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in C<sup>3</sup>'. Together they form a unique fingerprint.

  • Cite this