TY - GEN
T1 - Real-time solving of quantified CSPs based on Monte-Carlo game tree search
AU - Satomi, Baba
AU - Joe, Yongjoon
AU - Iwasaki, Atsushi
AU - Yokoo, Makoto
PY - 2011
Y1 - 2011
N2 - We develop a real-time algorithm based on a Monte-Carlo game tree search for solving a quantified constraint satisfaction problem (QCSP), which is a CSP where some variables are universally quantified. A universally quantified variable represents a choice of nature or an adversary. The goal of a QCSP is to make a robust plan against an adversary. However, obtaining a complete plan off-line is intractable when the size of the problem becomes large. Thus, we need to develop a real-time algorithm that sequentially selects a promising value at each deadline. Such a problem has been considered in the field of game tree search. In a standard game tree search algorithm, developing a good static evaluation function is crucial. However, developing a good static evaluation function for a QCSP is very difficult since it must estimate the possibility that a partially assigned QCSP is solvable. Thus, we apply a Monte-Carlo game tree search technique called UCT. However, the simple application of the UCT algorithm does not work since the player and the adversary are asymmetric, i.e., finding a game sequence where the player wins is very rare. We overcome this difficulty by introducing constraint propagation techniques. We experimentally compare the winning probability of our UCT-based algorithm and the state-of-the-art alpha-beta search algorithm. Our results show that our algorithm outperforms the state-of-the-art algorithm in large-scale problems.
AB - We develop a real-time algorithm based on a Monte-Carlo game tree search for solving a quantified constraint satisfaction problem (QCSP), which is a CSP where some variables are universally quantified. A universally quantified variable represents a choice of nature or an adversary. The goal of a QCSP is to make a robust plan against an adversary. However, obtaining a complete plan off-line is intractable when the size of the problem becomes large. Thus, we need to develop a real-time algorithm that sequentially selects a promising value at each deadline. Such a problem has been considered in the field of game tree search. In a standard game tree search algorithm, developing a good static evaluation function is crucial. However, developing a good static evaluation function for a QCSP is very difficult since it must estimate the possibility that a partially assigned QCSP is solvable. Thus, we apply a Monte-Carlo game tree search technique called UCT. However, the simple application of the UCT algorithm does not work since the player and the adversary are asymmetric, i.e., finding a game sequence where the player wins is very rare. We overcome this difficulty by introducing constraint propagation techniques. We experimentally compare the winning probability of our UCT-based algorithm and the state-of-the-art alpha-beta search algorithm. Our results show that our algorithm outperforms the state-of-the-art algorithm in large-scale problems.
UR - http://www.scopus.com/inward/record.url?scp=84858986652&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858986652&partnerID=8YFLogxK
U2 - 10.5591/978-1-57735-516-8/IJCAI11-116
DO - 10.5591/978-1-57735-516-8/IJCAI11-116
M3 - Conference contribution
AN - SCOPUS:84858986652
SN - 9781577355120
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 655
EP - 661
BT - IJCAI 2011 - 22nd International Joint Conference on Artificial Intelligence
T2 - 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011
Y2 - 16 July 2011 through 22 July 2011
ER -