Recent advances in III-Sb nanowires: From synthesis to applications

Senpo Yip, Lifan Shen, Johnny C. Ho

Research output: Contribution to journalReview articlepeer-review

22 Citations (Scopus)

Abstract

The excellent properties of III-V semiconductors make them intriguing candidates for next-generation electronics and optoelectronics. Their nanowire (NW) counterparts further provide interesting geometry and a quantum confinement effect which benefits various applications. Among the many members of all the III-V semiconductors, III-antimonide NWs have attracted significant research interest due to their narrow, direct bandgap and high carrier mobility. However, due to the difficulty of NW fabrication, the development of III-antimonide NWs and their corresponding applications are always a step behind the other III-V semiconductors. Until recent years, because of advances in understanding and fabrication techniques, electronic and optoelectronic devices based on III-antimonide NWs with novel performance have been fabricated. In this review, we will focus on the development of the synthesis of III-antimonide NWs using different techniques and strategies for fine-tuning the crystal structure and composition as well as fabricating their corresponding heterostructures. With such development, the recent progress in the applications of III-antimonide NWs in electronics and optoelectronics is also surveyed. All these discussions provide valuable guidelines for the design of III-antimonide NWs for next-generation device utilization.

Original languageEnglish
Article number202003
JournalNanotechnology
Volume30
Issue number20
DOIs
Publication statusPublished - Mar 13 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Recent advances in III-Sb nanowires: From synthesis to applications'. Together they form a unique fingerprint.

Cite this