Recent advances in the molecular pathology of soft tissue sarcoma

Implications for diagnosis, patient prognosis, and molecular target therapy in the future

Yoshinao Oda, Masazumi Tsuneyoshi

Research output: Contribution to journalReview article

24 Citations (Scopus)

Abstract

In the present paper, recent advances in the molecular pathology of soft tissue sarcomas (STS) and the implications for their prognostic value are reviewed, and the potential targets of molecular therapy are discussed. According to the molecular genetic aspect, STS are divided into two groups: chromosome translocation-associated sarcomas and sarcomas without specific translocation. In the former group, specific fusion transcripts, such as SS18-SSX, EWS-FLI1, and PAX3-FKHR, could be detected in synovial sarcoma, Ewing's sarcoma and primitive neuroectodermal tumor, and alveolar rhabdomyosarcoma, respectively. The direct or indirect interactions between these fusion transcripts and cell cycle regulators have been elucidated by several investigators. Therefore, these fusion transcripts are promising candidates as molecular targets. As evaluated in carcinomas, alterations of several tumor-suppressor genes and adhesion molecules and overexpression of growth factors and their receptors have been extensively assessed in STS. In mixed-type STS, epidermal growth factor receptor overexpression was associated with decreased overall survival, suggesting the beneficial role of epidermal growth factor receptor inhibitors in STS. In malignant rhabdoid tumor and epithelioid sarcoma, frequent alteration of the SMARCB1/INI1 tumor-suppressor gene and the loss of its protein have been demonstrated, indicating that this molecule could be an effective target of these sarcomas. In sarcomas with epithelioid differentiation, such as synovial sarcoma and epithelioid sarcoma, overexpression of dysadherin, which downregulates E-cadherin expression, was a poor prognostic factor. In conclusion, further studies are necessary to search for effective and specific molecules for the inhibition of tumor growth in each type of STS, especially in sarcomas without specific translocation.

Original languageEnglish
Pages (from-to)200-208
Number of pages9
JournalCancer Science
Volume100
Issue number2
DOIs
Publication statusPublished - Jan 28 2009

Fingerprint

Molecular Pathology
Sarcoma
Therapeutics
Synovial Sarcoma
Tumor Suppressor Genes
Epidermal Growth Factor Receptor
Alveolar Rhabdomyosarcoma
Rhabdoid Tumor
Primitive Neuroectodermal Tumors
Ewing's Sarcoma
Growth Factor Receptors
Cadherins
Molecular Biology
Cell Cycle
Down-Regulation
Chromosomes

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this

Recent advances in the molecular pathology of soft tissue sarcoma : Implications for diagnosis, patient prognosis, and molecular target therapy in the future. / Oda, Yoshinao; Tsuneyoshi, Masazumi.

In: Cancer Science, Vol. 100, No. 2, 28.01.2009, p. 200-208.

Research output: Contribution to journalReview article

@article{ce33558c6d3440c5ae5d60e8d1c527b4,
title = "Recent advances in the molecular pathology of soft tissue sarcoma: Implications for diagnosis, patient prognosis, and molecular target therapy in the future",
abstract = "In the present paper, recent advances in the molecular pathology of soft tissue sarcomas (STS) and the implications for their prognostic value are reviewed, and the potential targets of molecular therapy are discussed. According to the molecular genetic aspect, STS are divided into two groups: chromosome translocation-associated sarcomas and sarcomas without specific translocation. In the former group, specific fusion transcripts, such as SS18-SSX, EWS-FLI1, and PAX3-FKHR, could be detected in synovial sarcoma, Ewing's sarcoma and primitive neuroectodermal tumor, and alveolar rhabdomyosarcoma, respectively. The direct or indirect interactions between these fusion transcripts and cell cycle regulators have been elucidated by several investigators. Therefore, these fusion transcripts are promising candidates as molecular targets. As evaluated in carcinomas, alterations of several tumor-suppressor genes and adhesion molecules and overexpression of growth factors and their receptors have been extensively assessed in STS. In mixed-type STS, epidermal growth factor receptor overexpression was associated with decreased overall survival, suggesting the beneficial role of epidermal growth factor receptor inhibitors in STS. In malignant rhabdoid tumor and epithelioid sarcoma, frequent alteration of the SMARCB1/INI1 tumor-suppressor gene and the loss of its protein have been demonstrated, indicating that this molecule could be an effective target of these sarcomas. In sarcomas with epithelioid differentiation, such as synovial sarcoma and epithelioid sarcoma, overexpression of dysadherin, which downregulates E-cadherin expression, was a poor prognostic factor. In conclusion, further studies are necessary to search for effective and specific molecules for the inhibition of tumor growth in each type of STS, especially in sarcomas without specific translocation.",
author = "Yoshinao Oda and Masazumi Tsuneyoshi",
year = "2009",
month = "1",
day = "28",
doi = "10.1111/j.1349-7006.2008.01024.x",
language = "English",
volume = "100",
pages = "200--208",
journal = "Cancer Science",
issn = "1347-9032",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Recent advances in the molecular pathology of soft tissue sarcoma

T2 - Implications for diagnosis, patient prognosis, and molecular target therapy in the future

AU - Oda, Yoshinao

AU - Tsuneyoshi, Masazumi

PY - 2009/1/28

Y1 - 2009/1/28

N2 - In the present paper, recent advances in the molecular pathology of soft tissue sarcomas (STS) and the implications for their prognostic value are reviewed, and the potential targets of molecular therapy are discussed. According to the molecular genetic aspect, STS are divided into two groups: chromosome translocation-associated sarcomas and sarcomas without specific translocation. In the former group, specific fusion transcripts, such as SS18-SSX, EWS-FLI1, and PAX3-FKHR, could be detected in synovial sarcoma, Ewing's sarcoma and primitive neuroectodermal tumor, and alveolar rhabdomyosarcoma, respectively. The direct or indirect interactions between these fusion transcripts and cell cycle regulators have been elucidated by several investigators. Therefore, these fusion transcripts are promising candidates as molecular targets. As evaluated in carcinomas, alterations of several tumor-suppressor genes and adhesion molecules and overexpression of growth factors and their receptors have been extensively assessed in STS. In mixed-type STS, epidermal growth factor receptor overexpression was associated with decreased overall survival, suggesting the beneficial role of epidermal growth factor receptor inhibitors in STS. In malignant rhabdoid tumor and epithelioid sarcoma, frequent alteration of the SMARCB1/INI1 tumor-suppressor gene and the loss of its protein have been demonstrated, indicating that this molecule could be an effective target of these sarcomas. In sarcomas with epithelioid differentiation, such as synovial sarcoma and epithelioid sarcoma, overexpression of dysadherin, which downregulates E-cadherin expression, was a poor prognostic factor. In conclusion, further studies are necessary to search for effective and specific molecules for the inhibition of tumor growth in each type of STS, especially in sarcomas without specific translocation.

AB - In the present paper, recent advances in the molecular pathology of soft tissue sarcomas (STS) and the implications for their prognostic value are reviewed, and the potential targets of molecular therapy are discussed. According to the molecular genetic aspect, STS are divided into two groups: chromosome translocation-associated sarcomas and sarcomas without specific translocation. In the former group, specific fusion transcripts, such as SS18-SSX, EWS-FLI1, and PAX3-FKHR, could be detected in synovial sarcoma, Ewing's sarcoma and primitive neuroectodermal tumor, and alveolar rhabdomyosarcoma, respectively. The direct or indirect interactions between these fusion transcripts and cell cycle regulators have been elucidated by several investigators. Therefore, these fusion transcripts are promising candidates as molecular targets. As evaluated in carcinomas, alterations of several tumor-suppressor genes and adhesion molecules and overexpression of growth factors and their receptors have been extensively assessed in STS. In mixed-type STS, epidermal growth factor receptor overexpression was associated with decreased overall survival, suggesting the beneficial role of epidermal growth factor receptor inhibitors in STS. In malignant rhabdoid tumor and epithelioid sarcoma, frequent alteration of the SMARCB1/INI1 tumor-suppressor gene and the loss of its protein have been demonstrated, indicating that this molecule could be an effective target of these sarcomas. In sarcomas with epithelioid differentiation, such as synovial sarcoma and epithelioid sarcoma, overexpression of dysadherin, which downregulates E-cadherin expression, was a poor prognostic factor. In conclusion, further studies are necessary to search for effective and specific molecules for the inhibition of tumor growth in each type of STS, especially in sarcomas without specific translocation.

UR - http://www.scopus.com/inward/record.url?scp=58549090731&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=58549090731&partnerID=8YFLogxK

U2 - 10.1111/j.1349-7006.2008.01024.x

DO - 10.1111/j.1349-7006.2008.01024.x

M3 - Review article

VL - 100

SP - 200

EP - 208

JO - Cancer Science

JF - Cancer Science

SN - 1347-9032

IS - 2

ER -