Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology

Jin Zheng, Yukihiro Tashiro, Qunhui Wang, Kenji Sonomoto

Research output: Contribution to journalReview article

88 Citations (Scopus)

Abstract

Butanol has recently attracted attention as an alternative biofuel because of its various advantages over other biofuels. Many researchers have focused on butanol fermentation with renewable and sustainable resources, especially lignocellulosic materials, which has provided significant progress in butanol fermentation. However, there are still some drawbacks in butanol fermentation in terms of low butanol concentration and productivity, high cost of feedstock and product inhibition, which makes butanol fermentation less competitive than the production of other biofuels. These hurdles are being resolved in several ways. Genetic engineering is now available for improving butanol yield and butanol ratio through overexpression, knock out/down, and insertion of genes encoding key enzymes in the metabolic pathway of butanol fermentation. In addition, there are also many strategies to improve fermentation technology, such as multi-stage continuous fermentation, continuous fermentation integrated with immobilization and cell recycling, and the inclusion of additional organic acids or electron carriers to change metabolic flux. This review focuses on the most recent advances in butanol fermentation especially from the perspectives of genetic engineering and fermentation technology.

Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalJournal of Bioscience and Bioengineering
Volume119
Issue number1
DOIs
Publication statusPublished - Jan 1 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Cite this