TY - GEN
T1 - Recent progress on interpretation of tensile ductility loss for various austenitic stainless steels with external and internal hydrogen
AU - Takakuwa, Osamu
AU - Yamabe, Junichiro
AU - Matsunaga, Hisao
AU - Furuya, Yoshiyuki
AU - Matsuoka, Saburo
N1 - Funding Information:
This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Hydrogen Utilization Technology (2013 to 2018).
Publisher Copyright:
Copyright © 2017 ASME.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - Slow-strain rate tensile (SSRT) tests on various metals having γ-Fe phase; Type 304 and 316L stainless steels, HP160 high strength stainless steel, and A286 Fe-based super alloy were conducted in external hydrogen and with internal hydrogen. The external hydrogen indicates non-charged specimens tested in high-pressure hydrogen-gas environment, whereas the internal hydrogen indicates hydrogen-charged specimens, with uniform distribution of hydrogen, tested in inert gas. The hydrogen distribution was calculated based on the measured hydrogen diffusivity and solubility. The fracture morphologies were observed by scanning electron microscopy (SEM). For Types 304, 316L, and HP160 the relative reduction in area (RRA of the steels was successfully reproduced by the nickel equivalent, Nieq, showing the higher Nieq, the lager RRA. Furthermore, at a low Nieq, the RRA of the steel with external hydrogen was nearly equal to that with internal hydrogen. In contrast, at a high Nieq, the RRA of the steel with internal hydrogen was slightly degraded by hydrogen, RRA ∼ 0.8, whereas that in external hydrogen was not degraded, RRA ∼ 1. For A286, despite a high Nieq, the RRA of the alloy with internal hydrogen was significantly degraded by hydrogen, RRA ∼ 0.5. The fracture morphologies were categorized into four types: quasi-cleavage fracture associated with hydrogen-assisted surface cracks; ordinary void formation with no hydrogen effect; small-void formation associated with void sheet enhanced by hydrogen; facet formation induced by hydrogen. These categorized morphologies could be interpreted in terms of hydrogen distribution (internal or external hydrogen), austenitic stability (a low or high Nieq), and microstructure (solution or precipitation-hardened treatment).
AB - Slow-strain rate tensile (SSRT) tests on various metals having γ-Fe phase; Type 304 and 316L stainless steels, HP160 high strength stainless steel, and A286 Fe-based super alloy were conducted in external hydrogen and with internal hydrogen. The external hydrogen indicates non-charged specimens tested in high-pressure hydrogen-gas environment, whereas the internal hydrogen indicates hydrogen-charged specimens, with uniform distribution of hydrogen, tested in inert gas. The hydrogen distribution was calculated based on the measured hydrogen diffusivity and solubility. The fracture morphologies were observed by scanning electron microscopy (SEM). For Types 304, 316L, and HP160 the relative reduction in area (RRA of the steels was successfully reproduced by the nickel equivalent, Nieq, showing the higher Nieq, the lager RRA. Furthermore, at a low Nieq, the RRA of the steel with external hydrogen was nearly equal to that with internal hydrogen. In contrast, at a high Nieq, the RRA of the steel with internal hydrogen was slightly degraded by hydrogen, RRA ∼ 0.8, whereas that in external hydrogen was not degraded, RRA ∼ 1. For A286, despite a high Nieq, the RRA of the alloy with internal hydrogen was significantly degraded by hydrogen, RRA ∼ 0.5. The fracture morphologies were categorized into four types: quasi-cleavage fracture associated with hydrogen-assisted surface cracks; ordinary void formation with no hydrogen effect; small-void formation associated with void sheet enhanced by hydrogen; facet formation induced by hydrogen. These categorized morphologies could be interpreted in terms of hydrogen distribution (internal or external hydrogen), austenitic stability (a low or high Nieq), and microstructure (solution or precipitation-hardened treatment).
UR - http://www.scopus.com/inward/record.url?scp=85034040451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034040451&partnerID=8YFLogxK
U2 - 10.1115/PVP2017-65671
DO - 10.1115/PVP2017-65671
M3 - Conference contribution
AN - SCOPUS:85034040451
T3 - American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
BT - Materials and Fabrication
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 Pressure Vessels and Piping Conference, PVP 2017
Y2 - 16 July 2017 through 20 July 2017
ER -