Receptor control in mesenchymal stem cell engineering

Matthew J. Dalby, Andrés J. García, Manuel Salmeron-Sanchez

Research output: Contribution to journalReview articlepeer-review

43 Citations (Scopus)

Abstract

Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

Original languageEnglish
Article number17091
JournalNature Reviews Materials
Volume3
DOIs
Publication statusPublished - Jan 31 2018

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Energy (miscellaneous)
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Receptor control in mesenchymal stem cell engineering'. Together they form a unique fingerprint.

Cite this