Recognizing PSL(2, p) in the non-Frattini chief factors of finite groups

Duong Hoang Dung

Research output: Contribution to journalArticle

Abstract

Given a finite group G, let PG(s) be the probability that s randomly chosen elements generate G, and let H be a finite group with (Formula presented.). We show that if the nonabelian composition factors of G and H are PSL(2, p) for some non-Mersenne prime (Formula presented.) , then G and H have the same non-Frattini chief factors.

Original languageEnglish
Pages (from-to)201-208
Number of pages8
JournalArchiv der Mathematik
Volume106
Issue number3
DOIs
Publication statusPublished - Mar 1 2016

Fingerprint

Finite Group

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

Recognizing PSL(2, p) in the non-Frattini chief factors of finite groups. / Dung, Duong Hoang.

In: Archiv der Mathematik, Vol. 106, No. 3, 01.03.2016, p. 201-208.

Research output: Contribution to journalArticle

Dung, Duong Hoang. / Recognizing PSL(2, p) in the non-Frattini chief factors of finite groups. In: Archiv der Mathematik. 2016 ; Vol. 106, No. 3. pp. 201-208.
@article{49c7d0589cc44b8c8a0960a62243b116,
title = "Recognizing PSL(2, p) in the non-Frattini chief factors of finite groups",
abstract = "Given a finite group G, let PG(s) be the probability that s randomly chosen elements generate G, and let H be a finite group with (Formula presented.). We show that if the nonabelian composition factors of G and H are PSL(2, p) for some non-Mersenne prime (Formula presented.) , then G and H have the same non-Frattini chief factors.",
author = "Dung, {Duong Hoang}",
year = "2016",
month = "3",
day = "1",
doi = "10.1007/s00013-016-0869-3",
language = "English",
volume = "106",
pages = "201--208",
journal = "Archiv der Mathematik",
issn = "0003-889X",
publisher = "Birkhauser Verlag Basel",
number = "3",

}

TY - JOUR

T1 - Recognizing PSL(2, p) in the non-Frattini chief factors of finite groups

AU - Dung, Duong Hoang

PY - 2016/3/1

Y1 - 2016/3/1

N2 - Given a finite group G, let PG(s) be the probability that s randomly chosen elements generate G, and let H be a finite group with (Formula presented.). We show that if the nonabelian composition factors of G and H are PSL(2, p) for some non-Mersenne prime (Formula presented.) , then G and H have the same non-Frattini chief factors.

AB - Given a finite group G, let PG(s) be the probability that s randomly chosen elements generate G, and let H be a finite group with (Formula presented.). We show that if the nonabelian composition factors of G and H are PSL(2, p) for some non-Mersenne prime (Formula presented.) , then G and H have the same non-Frattini chief factors.

UR - http://www.scopus.com/inward/record.url?scp=84959162959&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84959162959&partnerID=8YFLogxK

U2 - 10.1007/s00013-016-0869-3

DO - 10.1007/s00013-016-0869-3

M3 - Article

AN - SCOPUS:84959162959

VL - 106

SP - 201

EP - 208

JO - Archiv der Mathematik

JF - Archiv der Mathematik

SN - 0003-889X

IS - 3

ER -