TY - JOUR
T1 - Reconstitution of mouse oogenesis in a dish from pluripotent stem cells
AU - Hayashi, Katsuhiko
AU - Hikabe, Orie
AU - Obata, Yayoi
AU - Hirao, Yuji
N1 - Funding Information:
ackNowlEDGMENtS We thank N. Hamada, S. Shomamoto, N. Hamazaki and G. Nagamatsu for providing technical details of the protocol. This study was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (KAKENHI nos. 25114006, 15K21736, 25290033 and 17H01395); by JST-PRESTO; by the Uehara Memorial Foundation; and by the Takeda Science Foundation.
Publisher Copyright:
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Generation of functional oocytes in culture from pluripotent stem cells should provide a useful model system for improving our understanding of the basic mechanisms underlying oogenesis. In addition, it has potential applications as an alternative source of oocytes for reproduction. Using the most advanced mouse model in regard to reproductive engineering and stem cell biology, we previously developed a culture method that produces functional primorial germ cells starting from pluripotent cells in culture and described it in a previous protocol. This Protocol Extension describes an adaptation of this existing Protocol in which oogenesis also occurs in vitro, thus substantially modifying the technique. Oocytes generated from embryonic stem cells (ESCs) or induced pluripotent stem cells give rise to healthy pups. Here, we describe the protocol for oocyte generation in culture. The protocol is mainly composed of three different culture stages: in vitro differentiation (IVDi), in vitro growth (IVG), and in vitro maturation (IVM), which in total take ∼5 weeks. In each culture period, there are several checkpoints that enable the number of oocytes being produced in the culture to be monitored. The basic structure of the culture system should provide a useful tool for clarifying the complicated sequence of oogenesis in mammals.
AB - Generation of functional oocytes in culture from pluripotent stem cells should provide a useful model system for improving our understanding of the basic mechanisms underlying oogenesis. In addition, it has potential applications as an alternative source of oocytes for reproduction. Using the most advanced mouse model in regard to reproductive engineering and stem cell biology, we previously developed a culture method that produces functional primorial germ cells starting from pluripotent cells in culture and described it in a previous protocol. This Protocol Extension describes an adaptation of this existing Protocol in which oogenesis also occurs in vitro, thus substantially modifying the technique. Oocytes generated from embryonic stem cells (ESCs) or induced pluripotent stem cells give rise to healthy pups. Here, we describe the protocol for oocyte generation in culture. The protocol is mainly composed of three different culture stages: in vitro differentiation (IVDi), in vitro growth (IVG), and in vitro maturation (IVM), which in total take ∼5 weeks. In each culture period, there are several checkpoints that enable the number of oocytes being produced in the culture to be monitored. The basic structure of the culture system should provide a useful tool for clarifying the complicated sequence of oogenesis in mammals.
UR - http://www.scopus.com/inward/record.url?scp=85027959656&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027959656&partnerID=8YFLogxK
U2 - 10.1038/nprot.2017.070
DO - 10.1038/nprot.2017.070
M3 - Article
C2 - 28796232
AN - SCOPUS:85027959656
SN - 1754-2189
VL - 12
SP - 1733
EP - 1744
JO - Nature Protocols
JF - Nature Protocols
IS - 9
ER -