Abstract
A pair of “redox-switched” monobenzo-21-crown-7 (Cr) analogues with a dithiol group at α, ω-positions (Crred) and a disulfide bond in the ring (Crox) has been synthesized. The interconversion between these two forms was effected by treatment with redox reagents. It was found that the oxidation process (Crred→ Crox) is remarkably subject to the metal template effect: the oxidation of Crred in the absence of the template gave the polymeric products (MW > 2000, 66%) in addition to Crox(5.2%), cyclic dimer (15%), and cyclic trimer (3.6%), whereas the main products in the presence of Cs+were Crox (70%) and cyclic dimer (28%) and no polymeric material was detected. The polymeric products yielded in the absence of the template depolymerized slowly to the cyclic products. Also interesting is the finding that the “kinetic” template effect is observed for the oxidation process: the pseudo-first-order rate constants for the oxidation of Crred by 3-methyllumiflavin are significantly enhanced with increase in the concentrations of Rb+ and Cs+. Such a rate increase could not be found for the oxidation of 1, 4-butanedithiol by 3-methyllumiflavin. The results of solvent extraction and evaluation of the association constants (K) established that (i) Crox has the highest selectivity for Cs+, as has Cr, (ii) the Ex% (and K) of Crox is smaller than that of Cr, and (iii) most importantly, Crredscarcely binds alkali metal cations. In ion transport across a liquid (CHC13) membrane, Crox carried Cs+6.2 times faster than Crred. Thus, it was demonstrated that the rate of Cs+transport can be regulated by the interconversion between Crred and Crox in the membrane phase. This is a new method to control the membrane transport rates by a redox-switch.
Original language | English |
---|---|
Pages (from-to) | 3950-3955 |
Number of pages | 6 |
Journal | Journal of the American Chemical Society |
Volume | 107 |
Issue number | 13 |
DOIs | |
Publication status | Published - Jan 1 1985 |
Externally published | Yes |
Fingerprint
All Science Journal Classification (ASJC) codes
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry
Cite this
Redox-Switched Crown Ethers. 3. Cyclic-Acyclic Interconversion Coupled with Redox between Dithiol and Disulfide and Its Application to Membrane Transport. / Shinkai, Seiji; Inuzuka, Kenichi; Miyazaki, Osamu; Manabe, Osamu.
In: Journal of the American Chemical Society, Vol. 107, No. 13, 01.01.1985, p. 3950-3955.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Redox-Switched Crown Ethers. 3. Cyclic-Acyclic Interconversion Coupled with Redox between Dithiol and Disulfide and Its Application to Membrane Transport
AU - Shinkai, Seiji
AU - Inuzuka, Kenichi
AU - Miyazaki, Osamu
AU - Manabe, Osamu
PY - 1985/1/1
Y1 - 1985/1/1
N2 - A pair of “redox-switched” monobenzo-21-crown-7 (Cr) analogues with a dithiol group at α, ω-positions (Crred) and a disulfide bond in the ring (Crox) has been synthesized. The interconversion between these two forms was effected by treatment with redox reagents. It was found that the oxidation process (Crred→ Crox) is remarkably subject to the metal template effect: the oxidation of Crred in the absence of the template gave the polymeric products (MW > 2000, 66%) in addition to Crox(5.2%), cyclic dimer (15%), and cyclic trimer (3.6%), whereas the main products in the presence of Cs+were Crox (70%) and cyclic dimer (28%) and no polymeric material was detected. The polymeric products yielded in the absence of the template depolymerized slowly to the cyclic products. Also interesting is the finding that the “kinetic” template effect is observed for the oxidation process: the pseudo-first-order rate constants for the oxidation of Crred by 3-methyllumiflavin are significantly enhanced with increase in the concentrations of Rb+ and Cs+. Such a rate increase could not be found for the oxidation of 1, 4-butanedithiol by 3-methyllumiflavin. The results of solvent extraction and evaluation of the association constants (K) established that (i) Crox has the highest selectivity for Cs+, as has Cr, (ii) the Ex% (and K) of Crox is smaller than that of Cr, and (iii) most importantly, Crredscarcely binds alkali metal cations. In ion transport across a liquid (CHC13) membrane, Crox carried Cs+6.2 times faster than Crred. Thus, it was demonstrated that the rate of Cs+transport can be regulated by the interconversion between Crred and Crox in the membrane phase. This is a new method to control the membrane transport rates by a redox-switch.
AB - A pair of “redox-switched” monobenzo-21-crown-7 (Cr) analogues with a dithiol group at α, ω-positions (Crred) and a disulfide bond in the ring (Crox) has been synthesized. The interconversion between these two forms was effected by treatment with redox reagents. It was found that the oxidation process (Crred→ Crox) is remarkably subject to the metal template effect: the oxidation of Crred in the absence of the template gave the polymeric products (MW > 2000, 66%) in addition to Crox(5.2%), cyclic dimer (15%), and cyclic trimer (3.6%), whereas the main products in the presence of Cs+were Crox (70%) and cyclic dimer (28%) and no polymeric material was detected. The polymeric products yielded in the absence of the template depolymerized slowly to the cyclic products. Also interesting is the finding that the “kinetic” template effect is observed for the oxidation process: the pseudo-first-order rate constants for the oxidation of Crred by 3-methyllumiflavin are significantly enhanced with increase in the concentrations of Rb+ and Cs+. Such a rate increase could not be found for the oxidation of 1, 4-butanedithiol by 3-methyllumiflavin. The results of solvent extraction and evaluation of the association constants (K) established that (i) Crox has the highest selectivity for Cs+, as has Cr, (ii) the Ex% (and K) of Crox is smaller than that of Cr, and (iii) most importantly, Crredscarcely binds alkali metal cations. In ion transport across a liquid (CHC13) membrane, Crox carried Cs+6.2 times faster than Crred. Thus, it was demonstrated that the rate of Cs+transport can be regulated by the interconversion between Crred and Crox in the membrane phase. This is a new method to control the membrane transport rates by a redox-switch.
UR - http://www.scopus.com/inward/record.url?scp=0001129664&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001129664&partnerID=8YFLogxK
U2 - 10.1021/ja00299a034
DO - 10.1021/ja00299a034
M3 - Article
AN - SCOPUS:0001129664
VL - 107
SP - 3950
EP - 3955
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 13
ER -