TY - JOUR
T1 - Regulation of plasmalogen biosynthesis in mammalian cells and tissues
AU - Honsho, Masanori
AU - Fujiki, Yukio
N1 - Publisher Copyright:
Copyright © 2023. Published by Elsevier Inc.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. Synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of patients with deficiency in peroxisome biogenesis suggests that de novo synthesis of plasmalogens contributes significantly to plasmalogen homeostasis in humans. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and regulates the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. Dysregulation of plasmalogen synthesis impairs cholesterol synthesis in cells and brain, resulting in the reduced expression of genes such as mRNA encoding myelin basic protein, a phenotype found in the cerebellum of plasmalogen-deficient mice. In this review, we summarize the current knowledge of molecular mechanisms underlying the regulation of plasmalogen biosynthesis and the link between plasmalogen homeostasis and cholesterol biosynthesis, and address the pathogenesis of impaired plasmalogen homeostasis in rodent and humans.
AB - Plasmalogens are a unique family of cellular glycerophospholipids that contain a vinyl-ether bond. Synthesis of plasmalogens is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of patients with deficiency in peroxisome biogenesis suggests that de novo synthesis of plasmalogens contributes significantly to plasmalogen homeostasis in humans. Plasmalogen biosynthesis is spatiotemporally regulated by a feedback mechanism that senses the amount of plasmalogens in the inner leaflet of the plasma membrane and regulates the stability of fatty acyl-CoA reductase 1 (FAR1), the rate-limiting enzyme for plasmalogen biosynthesis. Dysregulation of plasmalogen synthesis impairs cholesterol synthesis in cells and brain, resulting in the reduced expression of genes such as mRNA encoding myelin basic protein, a phenotype found in the cerebellum of plasmalogen-deficient mice. In this review, we summarize the current knowledge of molecular mechanisms underlying the regulation of plasmalogen biosynthesis and the link between plasmalogen homeostasis and cholesterol biosynthesis, and address the pathogenesis of impaired plasmalogen homeostasis in rodent and humans.
UR - http://www.scopus.com/inward/record.url?scp=85148479275&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148479275&partnerID=8YFLogxK
U2 - 10.1016/j.brainresbull.2023.01.011
DO - 10.1016/j.brainresbull.2023.01.011
M3 - Review article
C2 - 36720320
AN - SCOPUS:85148479275
SN - 0361-9230
VL - 194
SP - 118
EP - 123
JO - Journal of Electrophysiological Techniques
JF - Journal of Electrophysiological Techniques
ER -