Regulation of the brain neural niche by soluble molecule akhirin

Mikiko Kudo, Kunimasa Ohta

Research output: Contribution to journalReview articlepeer-review

Abstract

In the central nervous system (CNS), which comprises the eyes, spinal cord, and brain, neural cells are produced by the repeated division of neural stem cells (NSCs) during the development of the CNS. Contrary to the notion that the CNS is relatively static with a limited cell turnover, cells with stem cell-like properties have been isolated from most neural tissues. The microenvironment, also known as the NSC niche, consists of NSCs/neural progenitor cells, other neurons, glial cells, and blood vessels; this niche is thought to regulate neurogenesis and the differentiation of NSCs into neurons and glia. Although it has been established that neurons, glia, and blood vessels interact with each other in a complex manner to generate neural tissues in the NSC niche, the underlying molecular mechanisms in the CNS niche are unclear. Herein, we would like to introduce the extracellular secreted protein, Akhirin (AKH; Akhi is the Bengali translation for eye). AKH is specifically expressed in the CNS niche—the ciliary body epithelium in the retina, the central canal of the spinal cord, the subventricular zone, and the subgranular zone of the dentate gyrus of the hippocampus—and is supposedly involved in NSC niche regulation. In this review, we discuss the role of AKH as a niche molecule during mouse brain formation.

Original languageEnglish
Article number29
JournalJournal of Developmental Biology
Volume9
Issue number3
DOIs
Publication statusPublished - Sep 2021

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Regulation of the brain neural niche by soluble molecule akhirin'. Together they form a unique fingerprint.

Cite this