Relationship between day-to-day variability of equatorial plasma bubble activity from GPS scintillation and atmospheric properties from Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) assimilation

Mamoru Yamamoto, Yuichi Otsuka, Hidekatsu Jin, Yasunobu Miyoshi

Research output: Contribution to journalArticle

Abstract

The relationship between day-to-day variability of equatorial plasma bubbles (EPBs) and the neutral atmosphere is studied. This study is based on the previous study in which the GPS scintillation index and the tropospheric cloud-top temperature are used as proxies for EPB activity and atmospheric perturbations, respectively, and a correlation was found between their day-to-day variations. In this paper, we maintained the same GPS scintillation data but substituted the atmospheric data via an assimilation run of the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). Cross-correlation between the EPB activity and the atmospheric temperature is similar to the results in Ogawa et al. (Earth Planets Space 61:397–410, 2009). The new findings from our study include (1) an enhanced correlation between the EPB activity and the neutral atmosphere is found in horizontally and vertically large areas, (2) the longitudinal disturbance of atmospheric temperature and wind velocity during the EPB-active days is enhanced, and (3) the enhancement of atmospheric disturbance during the EPB-active days shows a similarity to the characteristics of large-scale wave structures in the ionosphere. These results more clearly support couplings between EPBs and the neutral atmosphere. [Figure not available: see fulltext.].

Original languageEnglish
Article number26
JournalProgress in Earth and Planetary Science
Volume5
Issue number1
DOIs
Publication statusPublished - Dec 1 2018

Fingerprint

bubble
ionosphere
GPS
plasma
atmosphere
air temperature
disturbance
assimilation
planet
wind velocity
perturbation
temperature

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

Cite this

@article{d82021b60228467485940193649328fc,
title = "Relationship between day-to-day variability of equatorial plasma bubble activity from GPS scintillation and atmospheric properties from Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) assimilation",
abstract = "The relationship between day-to-day variability of equatorial plasma bubbles (EPBs) and the neutral atmosphere is studied. This study is based on the previous study in which the GPS scintillation index and the tropospheric cloud-top temperature are used as proxies for EPB activity and atmospheric perturbations, respectively, and a correlation was found between their day-to-day variations. In this paper, we maintained the same GPS scintillation data but substituted the atmospheric data via an assimilation run of the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). Cross-correlation between the EPB activity and the atmospheric temperature is similar to the results in Ogawa et al. (Earth Planets Space 61:397–410, 2009). The new findings from our study include (1) an enhanced correlation between the EPB activity and the neutral atmosphere is found in horizontally and vertically large areas, (2) the longitudinal disturbance of atmospheric temperature and wind velocity during the EPB-active days is enhanced, and (3) the enhancement of atmospheric disturbance during the EPB-active days shows a similarity to the characteristics of large-scale wave structures in the ionosphere. These results more clearly support couplings between EPBs and the neutral atmosphere. [Figure not available: see fulltext.].",
author = "Mamoru Yamamoto and Yuichi Otsuka and Hidekatsu Jin and Yasunobu Miyoshi",
year = "2018",
month = "12",
day = "1",
doi = "10.1186/s40645-018-0184-7",
language = "English",
volume = "5",
journal = "Progress in Earth and Planetary Science",
issn = "2197-4284",
publisher = "Springer Open",
number = "1",

}

TY - JOUR

T1 - Relationship between day-to-day variability of equatorial plasma bubble activity from GPS scintillation and atmospheric properties from Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) assimilation

AU - Yamamoto, Mamoru

AU - Otsuka, Yuichi

AU - Jin, Hidekatsu

AU - Miyoshi, Yasunobu

PY - 2018/12/1

Y1 - 2018/12/1

N2 - The relationship between day-to-day variability of equatorial plasma bubbles (EPBs) and the neutral atmosphere is studied. This study is based on the previous study in which the GPS scintillation index and the tropospheric cloud-top temperature are used as proxies for EPB activity and atmospheric perturbations, respectively, and a correlation was found between their day-to-day variations. In this paper, we maintained the same GPS scintillation data but substituted the atmospheric data via an assimilation run of the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). Cross-correlation between the EPB activity and the atmospheric temperature is similar to the results in Ogawa et al. (Earth Planets Space 61:397–410, 2009). The new findings from our study include (1) an enhanced correlation between the EPB activity and the neutral atmosphere is found in horizontally and vertically large areas, (2) the longitudinal disturbance of atmospheric temperature and wind velocity during the EPB-active days is enhanced, and (3) the enhancement of atmospheric disturbance during the EPB-active days shows a similarity to the characteristics of large-scale wave structures in the ionosphere. These results more clearly support couplings between EPBs and the neutral atmosphere. [Figure not available: see fulltext.].

AB - The relationship between day-to-day variability of equatorial plasma bubbles (EPBs) and the neutral atmosphere is studied. This study is based on the previous study in which the GPS scintillation index and the tropospheric cloud-top temperature are used as proxies for EPB activity and atmospheric perturbations, respectively, and a correlation was found between their day-to-day variations. In this paper, we maintained the same GPS scintillation data but substituted the atmospheric data via an assimilation run of the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). Cross-correlation between the EPB activity and the atmospheric temperature is similar to the results in Ogawa et al. (Earth Planets Space 61:397–410, 2009). The new findings from our study include (1) an enhanced correlation between the EPB activity and the neutral atmosphere is found in horizontally and vertically large areas, (2) the longitudinal disturbance of atmospheric temperature and wind velocity during the EPB-active days is enhanced, and (3) the enhancement of atmospheric disturbance during the EPB-active days shows a similarity to the characteristics of large-scale wave structures in the ionosphere. These results more clearly support couplings between EPBs and the neutral atmosphere. [Figure not available: see fulltext.].

UR - http://www.scopus.com/inward/record.url?scp=85046473109&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046473109&partnerID=8YFLogxK

U2 - 10.1186/s40645-018-0184-7

DO - 10.1186/s40645-018-0184-7

M3 - Article

AN - SCOPUS:85046473109

VL - 5

JO - Progress in Earth and Planetary Science

JF - Progress in Earth and Planetary Science

SN - 2197-4284

IS - 1

M1 - 26

ER -