Relationship between microstructure and hydrogen absorption behavior in a V-bearing high strength steel

Takehiro Tsuchida, Toru Hara, Kaneaki Tsuzaki

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Hydrogen thermal desorption analysis and TEM observation were performed to understand the relationship between microstructure and hydrogen absorption behavior in a V-bearing steel (0.4C-1.0Cr-0.7Mo-0.35V; mass%). The hydrogen absorption behavior was changed by controlling (V,X)C precipitation with change of tempering temperature from 300 to 700°C. Hydrogen was absorbed into the specimen by cathodic charging at a constant condition, and its content was examined by thermal desorption analysis. Energy-filtering and high-resolution TEM methods were employed to observe the size and distribution of (V,X)C precipitates. When the specimen was tempered at around 600°C, the absorbed hydrogen content was markedly increased; 3 times higher than that of the as-quenched specimen. TEM observation showed that this significant hydrogen absorption was attributed to nano-scale (V,X)C coherent precipitates. When the specimen was tempered at 700°C, the absorbed hydrogen content was decreased but was still as high as that of the as-quenched specimen. This was due to spherical (V,X)C incoherent precipitates with about 20 nm in diameter. It was estimated from hydrogen desorption profiles that activation energy of hydrogen evolution from trapping sites for the fine coherent precipitates was similar to that for dislocations and lower than that for the coarse incoherent precipitates.

Original languageEnglish
Pages (from-to)771-778
Number of pages8
JournalTetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
Volume88
Issue number11
DOIs
Publication statusPublished - Nov 2002
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Relationship between microstructure and hydrogen absorption behavior in a V-bearing high strength steel'. Together they form a unique fingerprint.

  • Cite this