Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold

Takayuki Nishimura, Shigeki Watanuki

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Background: Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure.Methods: Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments.Results: Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group.Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although T-dist was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of T-dist were observed during periods of cold exposure.Conclusions: Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism.

Original languageEnglish
Article number27
JournalJournal of physiological anthropology
Volume33
Issue number1
DOIs
Publication statusPublished - Sep 3 2014

Fingerprint

Thermogenesis
Genes
Human engineering
Polymorphism
Skin
DNA
Group
Students
heredity
Temperature
Mitochondrial DNA
Experiments
Mitochondrial Dynamics
chamber
Skin Temperature
Values
expenditures
candidacy
Climate
climate

All Science Journal Classification (ASJC) codes

  • Human Factors and Ergonomics
  • Physiology
  • Orthopedics and Sports Medicine
  • Anthropology
  • Public Health, Environmental and Occupational Health
  • Physiology (medical)

Cite this

Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold. / Nishimura, Takayuki; Watanuki, Shigeki.

In: Journal of physiological anthropology, Vol. 33, No. 1, 27, 03.09.2014.

Research output: Contribution to journalArticle

@article{83aefd43f60f4c6fa026790474286a2e,
title = "Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold",
abstract = "Background: Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure.Methods: Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments.Results: Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group.Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although T-dist was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of T-dist were observed during periods of cold exposure.Conclusions: Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism.",
author = "Takayuki Nishimura and Shigeki Watanuki",
year = "2014",
month = "9",
day = "3",
doi = "10.1186/1880-6805-33-27",
language = "English",
volume = "33",
journal = "Journal of Physiological Anthropology",
issn = "1880-6791",
publisher = "Japan Society of Physiological Anthropology",
number = "1",

}

TY - JOUR

T1 - Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold

AU - Nishimura, Takayuki

AU - Watanuki, Shigeki

PY - 2014/9/3

Y1 - 2014/9/3

N2 - Background: Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure.Methods: Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments.Results: Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group.Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although T-dist was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of T-dist were observed during periods of cold exposure.Conclusions: Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism.

AB - Background: Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure.Methods: Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments.Results: Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group.Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although T-dist was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of T-dist were observed during periods of cold exposure.Conclusions: Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism.

UR - http://www.scopus.com/inward/record.url?scp=84908131402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908131402&partnerID=8YFLogxK

U2 - 10.1186/1880-6805-33-27

DO - 10.1186/1880-6805-33-27

M3 - Article

C2 - 25183371

AN - SCOPUS:84908131402

VL - 33

JO - Journal of Physiological Anthropology

JF - Journal of Physiological Anthropology

SN - 1880-6791

IS - 1

M1 - 27

ER -