Relationship between viscoelasticity and electrical conductivity of carbonized cellulose fiber networks

Liwei Yu, Daisuke Tatsumi, Mitsuhiro Morita

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Cellulose fibers were carbonized at 900 °C to make fiber networks having conducting properties. Dynamic viscoelasticity and electrical conductivity of the conductive fiber networks were examined. The storage modulus, G', of the networks increased with the network concentration, c, and a power law was found between G' and c: G' = kcα. The exponent, α, was almost the same as that of the other power law for non-carbonized cellulose fiber networks. The electrical conductivity, σ, of the conductive fiber networks also increased with c, and another power law was found between σ and c: σ = k'cβ. The value of exponent, β, was almost the same as α. The coincidence of the exponents for the power law relationships indicates that both of the viscoelastic and electric behaviors of the networks were expressed with the same formula attributed to transfer phenomena, that is momentum and electron transfer, respectively.

Original languageEnglish
Pages (from-to)331-336
Number of pages6
JournalNihon Reoroji Gakkaishi
Volume41
Issue number5
DOIs
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Relationship between viscoelasticity and electrical conductivity of carbonized cellulose fiber networks'. Together they form a unique fingerprint.

  • Cite this