Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja

Junko Kusumi, Aya Sato, Hidenori Tachida

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The light-independent protochlorophyllide oxidoreductase (DPOR) plays a key role in the ability of nonflowering plants and algae to synthesize chlorophyll in darkness. This enzyme consists of three subunits encoded by the chlB, chlL, and chlN genes in the plastid genome. Previously, we found a high nonsynonymous substitution rate (dN) of the chlL gene in the lineage of Thuja standishii, a conifer belonging to the Cupressaceae. Here we revealed that the acceleration of dN in the chlL occurred as well in other species of Thuja, Thuja occidentalis and Thuja plicata. In addition, dark-grown seedlings of T. occidentalis were found to exhibit a pale yellowish color, and their chlorophyll concentration was much lower than that of other species of Cupressaceae. The results suggested that the species of Thuja have lost the ability to synthesize chlorophyll in darkness, and the functional constraint on the DPOR would thus be expected to be relaxed in this genus. Therefore, we expected to find that the evolutionary rates of all subunits of DPOR would in this case be accelerated. Sequence analyses of the chlN and chlB (encoding the other subunits of DPOR) in 18 species of Cupressaceae revealed that the dN of the chlN gene was accelerated in Thuja as was the dN of the chlL gene, but the rfN of the chlB gene did not appear to differ significantly among the species of Cupressaceae. Sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products of these genes showed that RNA editing was rare and unlikely to have contributed to the acceleration. Moreover, the RT-PCR analysis indicated that all chl genes were still transcriptionally active in T. occidentalis. Based on these results, it appears that species of Thuja still bear the DPOR protein, although the enzyme has lost its activity because of nonsynonymous mutations of some of the chl genes. The lack of acceleration of the dN of the chlB gene might be accounted for by various unknown functions of its gene product.

Original languageEnglish
Pages (from-to)941-948
Number of pages8
JournalMolecular Biology and Evolution
Volume23
Issue number5
DOIs
Publication statusPublished - May 1 2006

Fingerprint

Thuja
Protochlorophyllide
protochlorophyllides
oxidoreductases
Oxidoreductases
Genes
Light
Cupressaceae
gene
Thuja occidentalis
genes
Chlorophyll
chlorophyll
Polymerase chain reaction
Darkness
Transcription
algae
polymerase chain reaction
Reverse Transcription
Plastid Genomes

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics

Cite this

Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja. / Kusumi, Junko; Sato, Aya; Tachida, Hidenori.

In: Molecular Biology and Evolution, Vol. 23, No. 5, 01.05.2006, p. 941-948.

Research output: Contribution to journalArticle

@article{beb26b8f5bfc4ca58e79f7158448d248,
title = "Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja",
abstract = "The light-independent protochlorophyllide oxidoreductase (DPOR) plays a key role in the ability of nonflowering plants and algae to synthesize chlorophyll in darkness. This enzyme consists of three subunits encoded by the chlB, chlL, and chlN genes in the plastid genome. Previously, we found a high nonsynonymous substitution rate (dN) of the chlL gene in the lineage of Thuja standishii, a conifer belonging to the Cupressaceae. Here we revealed that the acceleration of dN in the chlL occurred as well in other species of Thuja, Thuja occidentalis and Thuja plicata. In addition, dark-grown seedlings of T. occidentalis were found to exhibit a pale yellowish color, and their chlorophyll concentration was much lower than that of other species of Cupressaceae. The results suggested that the species of Thuja have lost the ability to synthesize chlorophyll in darkness, and the functional constraint on the DPOR would thus be expected to be relaxed in this genus. Therefore, we expected to find that the evolutionary rates of all subunits of DPOR would in this case be accelerated. Sequence analyses of the chlN and chlB (encoding the other subunits of DPOR) in 18 species of Cupressaceae revealed that the dN of the chlN gene was accelerated in Thuja as was the dN of the chlL gene, but the rfN of the chlB gene did not appear to differ significantly among the species of Cupressaceae. Sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products of these genes showed that RNA editing was rare and unlikely to have contributed to the acceleration. Moreover, the RT-PCR analysis indicated that all chl genes were still transcriptionally active in T. occidentalis. Based on these results, it appears that species of Thuja still bear the DPOR protein, although the enzyme has lost its activity because of nonsynonymous mutations of some of the chl genes. The lack of acceleration of the dN of the chlB gene might be accounted for by various unknown functions of its gene product.",
author = "Junko Kusumi and Aya Sato and Hidenori Tachida",
year = "2006",
month = "5",
day = "1",
doi = "10.1093/molbev/msj097",
language = "English",
volume = "23",
pages = "941--948",
journal = "Molecular Biology and Evolution",
issn = "0737-4038",
publisher = "Oxford University Press",
number = "5",

}

TY - JOUR

T1 - Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja

AU - Kusumi, Junko

AU - Sato, Aya

AU - Tachida, Hidenori

PY - 2006/5/1

Y1 - 2006/5/1

N2 - The light-independent protochlorophyllide oxidoreductase (DPOR) plays a key role in the ability of nonflowering plants and algae to synthesize chlorophyll in darkness. This enzyme consists of three subunits encoded by the chlB, chlL, and chlN genes in the plastid genome. Previously, we found a high nonsynonymous substitution rate (dN) of the chlL gene in the lineage of Thuja standishii, a conifer belonging to the Cupressaceae. Here we revealed that the acceleration of dN in the chlL occurred as well in other species of Thuja, Thuja occidentalis and Thuja plicata. In addition, dark-grown seedlings of T. occidentalis were found to exhibit a pale yellowish color, and their chlorophyll concentration was much lower than that of other species of Cupressaceae. The results suggested that the species of Thuja have lost the ability to synthesize chlorophyll in darkness, and the functional constraint on the DPOR would thus be expected to be relaxed in this genus. Therefore, we expected to find that the evolutionary rates of all subunits of DPOR would in this case be accelerated. Sequence analyses of the chlN and chlB (encoding the other subunits of DPOR) in 18 species of Cupressaceae revealed that the dN of the chlN gene was accelerated in Thuja as was the dN of the chlL gene, but the rfN of the chlB gene did not appear to differ significantly among the species of Cupressaceae. Sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products of these genes showed that RNA editing was rare and unlikely to have contributed to the acceleration. Moreover, the RT-PCR analysis indicated that all chl genes were still transcriptionally active in T. occidentalis. Based on these results, it appears that species of Thuja still bear the DPOR protein, although the enzyme has lost its activity because of nonsynonymous mutations of some of the chl genes. The lack of acceleration of the dN of the chlB gene might be accounted for by various unknown functions of its gene product.

AB - The light-independent protochlorophyllide oxidoreductase (DPOR) plays a key role in the ability of nonflowering plants and algae to synthesize chlorophyll in darkness. This enzyme consists of three subunits encoded by the chlB, chlL, and chlN genes in the plastid genome. Previously, we found a high nonsynonymous substitution rate (dN) of the chlL gene in the lineage of Thuja standishii, a conifer belonging to the Cupressaceae. Here we revealed that the acceleration of dN in the chlL occurred as well in other species of Thuja, Thuja occidentalis and Thuja plicata. In addition, dark-grown seedlings of T. occidentalis were found to exhibit a pale yellowish color, and their chlorophyll concentration was much lower than that of other species of Cupressaceae. The results suggested that the species of Thuja have lost the ability to synthesize chlorophyll in darkness, and the functional constraint on the DPOR would thus be expected to be relaxed in this genus. Therefore, we expected to find that the evolutionary rates of all subunits of DPOR would in this case be accelerated. Sequence analyses of the chlN and chlB (encoding the other subunits of DPOR) in 18 species of Cupressaceae revealed that the dN of the chlN gene was accelerated in Thuja as was the dN of the chlL gene, but the rfN of the chlB gene did not appear to differ significantly among the species of Cupressaceae. Sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products of these genes showed that RNA editing was rare and unlikely to have contributed to the acceleration. Moreover, the RT-PCR analysis indicated that all chl genes were still transcriptionally active in T. occidentalis. Based on these results, it appears that species of Thuja still bear the DPOR protein, although the enzyme has lost its activity because of nonsynonymous mutations of some of the chl genes. The lack of acceleration of the dN of the chlB gene might be accounted for by various unknown functions of its gene product.

UR - http://www.scopus.com/inward/record.url?scp=33646568456&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646568456&partnerID=8YFLogxK

U2 - 10.1093/molbev/msj097

DO - 10.1093/molbev/msj097

M3 - Article

C2 - 16428257

AN - SCOPUS:33646568456

VL - 23

SP - 941

EP - 948

JO - Molecular Biology and Evolution

JF - Molecular Biology and Evolution

SN - 0737-4038

IS - 5

ER -