TY - JOUR
T1 - Remote delivery and expression of soluble type II TGF-beta receptor in muscle prevents hepatic fibrosis in rats.
AU - Nakamuta, Makoto
AU - Morizono, Shusuke
AU - Tsuruta, Satoru
AU - Kohjima, Motoyuki
AU - Kotoh, Kazuhiro
AU - Enjoji, Munechika
PY - 2005/7
Y1 - 2005/7
N2 - Transforming growth factor-beta (TGF-beta) has been implicated in the process of hepatic fibrosis, and stimulates production of extracellular matrix in hepatic stellate cells, which play a major role in the process. It has been recently reported that blockage of TGF-beta signaling prevents hepatic fibrosis. We evaluated a strategy for anti-TGF-beta gene therapy for hepatic fibrosis by transfecting plasmids expressing an entire extracellular domain of human TGF-beta type II [soluble type II TGF-beta receptor (sTGF-betaIIR)] into skeletal muscle in a rat experimental model of dimethylnitrosamine- (DMN-) induced fibrosis. sTGF-betaIIR treatment decreased significantly the occurrence of DMN-induced hepatic fibrosis, evaluated by computed image analysis and by measurement of hydroxyproline content of the liver, and reduced the expression of collagen and alpha-smooth muscle actin. The treatment also caused a significant decrease in hepatic levels of interleukin- (IL-) 12 (Th1 cytokine) and an increase in those of IL-10 (Th2 cytokine), indicating a change in the Th1/Th2 cytokine balance in the liver. In conclusion, blockade of TGF-beta after intramuscular transfer of the soluble type II TGF-beta receptor gene suppressed hepatic fibrosis, suggesting that this strategy may be useful for gene therapy of hepatic fibrosis.
AB - Transforming growth factor-beta (TGF-beta) has been implicated in the process of hepatic fibrosis, and stimulates production of extracellular matrix in hepatic stellate cells, which play a major role in the process. It has been recently reported that blockage of TGF-beta signaling prevents hepatic fibrosis. We evaluated a strategy for anti-TGF-beta gene therapy for hepatic fibrosis by transfecting plasmids expressing an entire extracellular domain of human TGF-beta type II [soluble type II TGF-beta receptor (sTGF-betaIIR)] into skeletal muscle in a rat experimental model of dimethylnitrosamine- (DMN-) induced fibrosis. sTGF-betaIIR treatment decreased significantly the occurrence of DMN-induced hepatic fibrosis, evaluated by computed image analysis and by measurement of hydroxyproline content of the liver, and reduced the expression of collagen and alpha-smooth muscle actin. The treatment also caused a significant decrease in hepatic levels of interleukin- (IL-) 12 (Th1 cytokine) and an increase in those of IL-10 (Th2 cytokine), indicating a change in the Th1/Th2 cytokine balance in the liver. In conclusion, blockade of TGF-beta after intramuscular transfer of the soluble type II TGF-beta receptor gene suppressed hepatic fibrosis, suggesting that this strategy may be useful for gene therapy of hepatic fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=33644660043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644660043&partnerID=8YFLogxK
M3 - Article
C2 - 15942678
AN - SCOPUS:33644660043
SN - 1107-3756
VL - 16
SP - 59
EP - 64
JO - International Journal of Molecular Medicine
JF - International Journal of Molecular Medicine
IS - 1
ER -