Reorientation Kinetics of Local Conformation of Polyisoprene at Substrate Interface

Shin Sugimoto, Manabu Inutsuka, Daisuke Kawaguchi, Keiji Tanaka

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

The performance of a polymer composite material, in which inorganic fillers are dispersed, is closely related to the aggregation states and dynamics of polymer chains at the interface with the filler. In this study, the local conformation of polyisoprene (PI) at a quartz substrate interface was studied as a model system for the rubber/filler composite material. PI films were prepared from a toluene solution onto quartz substrates by a spin-coating method. Sum-frequency generation spectroscopy revealed that the local conformation of PI chains at the quartz interface depended on the spinning rate. The tilt angle of methyl groups increased with the rotational speed, probably due to the centrifugal force applied to chains and probably also the evaporation rate of the solvent during the solidification process. This result indicates that the interfacial orientation of PI chains can remain even at room temperature, which is 87 K higher than the bulk glass transition temperature (Tgb). The interfacial orientation disappeared at a temperature approximately 120 K higher than Tgb.

Original languageEnglish
Pages (from-to)85-89
Number of pages5
JournalACS Macro Letters
Volume7
Issue number1
DOIs
Publication statusPublished - Jan 16 2018

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Reorientation Kinetics of Local Conformation of Polyisoprene at Substrate Interface'. Together they form a unique fingerprint.

Cite this