Reorientation Kinetics of Local Conformation of Polyisoprene at Substrate Interface

Shin Sugimoto, Manabu Inutsuka, Daisuke Kawaguchi, Keiji Tanaka

    Research output: Contribution to journalArticlepeer-review

    22 Citations (Scopus)

    Abstract

    The performance of a polymer composite material, in which inorganic fillers are dispersed, is closely related to the aggregation states and dynamics of polymer chains at the interface with the filler. In this study, the local conformation of polyisoprene (PI) at a quartz substrate interface was studied as a model system for the rubber/filler composite material. PI films were prepared from a toluene solution onto quartz substrates by a spin-coating method. Sum-frequency generation spectroscopy revealed that the local conformation of PI chains at the quartz interface depended on the spinning rate. The tilt angle of methyl groups increased with the rotational speed, probably due to the centrifugal force applied to chains and probably also the evaporation rate of the solvent during the solidification process. This result indicates that the interfacial orientation of PI chains can remain even at room temperature, which is 87 K higher than the bulk glass transition temperature (Tgb). The interfacial orientation disappeared at a temperature approximately 120 K higher than Tgb.

    Original languageEnglish
    Pages (from-to)85-89
    Number of pages5
    JournalACS Macro Letters
    Volume7
    Issue number1
    DOIs
    Publication statusPublished - Jan 16 2018

    All Science Journal Classification (ASJC) codes

    • Organic Chemistry
    • Polymers and Plastics
    • Inorganic Chemistry
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Reorientation Kinetics of Local Conformation of Polyisoprene at Substrate Interface'. Together they form a unique fingerprint.

    Cite this