Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures

Daisuke Kan, Ryotaro Aso, Hiroki Kurata, Yuichi Shimakawa

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Interface engineering of structural distortions is a key for exploring the functional properties of oxide heterostructures and superlattices. In this paper, we report on our comprehensive investigations of oxygen octahedral distortions at the heterointerface between perovskite oxides SrRuO3 and BaTiO3 on GdScO3 substrates and of the influences of the interfacially engineered distortions on the magneto-transport properties of the SrRuO3 layer. Our state-of-the-art annular bright-field imaging in aberration-corrected scanning transmission electron microscopy revealed that the RuO6 octahedral distortions in the SrRuO3 layer have strong dependence on the stacking order of the SrRuO3 and BaTiO3 layers on the substrate. This can be attributed to the difference in the interfacial octahedral connections. We also found that the stacking order of the oxide layers has a strong impact on the magneto-transport properties, allowing for control of the magnetic anisotropy of the SrRuO3 layer through interface engineering. Our results demonstrate the significance of the interface engineering of the octahedral distortions on the structural and physical properties of perovskite oxides.

Original languageEnglish
Article number062302
JournalAPL Materials
Issue number6
Publication statusPublished - Jun 1 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)


Dive into the research topics of 'Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures'. Together they form a unique fingerprint.

Cite this