Residential energy consumer occupancy prediction based on support vector machine

Research output: Contribution to journalArticlepeer-review

Abstract

The occupancy of residential energy consumers is an important subject to be studied to account for the changes on the load curve shape caused by paradigm shifts to consumer-centric energy markets or by significant energy demand variations due to pandemics, such as COVID-19. For non-intrusive occupancy analysis, multiple types of sensors can be installed to collect data based on which the consumer occupancy can be learned. However, the overall system cost will be increased as a result. Therefore, this research proposes a cheap and lightweight machine learning approach to predict the energy consumer occupancy based solely on their electricity consumption data. The proposed approach employs a support vector machine (SVM), in which different kernels are used and compared, including positive semi-definite and conditionally positive definite kernels. Efficiency of the proposed approach is depicted by different performance indexes calculated on simulation results with a realistic, publicly available dataset. Among SVM models with different kernels, those with Gaussian (rbf) and sigmoid kernels have the highest performance indexes, hence they may be most suitable to be used for residential energy consumer occupancy prediction.

Original languageEnglish
Article number8321
JournalSustainability (Switzerland)
Volume13
Issue number15
DOIs
Publication statusPublished - Aug 1 2021

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Residential energy consumer occupancy prediction based on support vector machine'. Together they form a unique fingerprint.

Cite this