Reversible solid state Fe-air rechargeable battery using LaGaO3 based oxide ion conducting electrolyte

Tatsumi Ishihara, Atsushi Inoishi, Sintaro Ida

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    The combination of solid oxide fuel cell technology with Fe-air battery concept was proposed by using H2/H2O as a redox mediator and LaGaO3 based oxide for electrolyte. Since large internal resistance and large degradation during charge and discharge cycles are observed on anode, improvement in discharge potential and cycle stability are strongly required by improving stability of anode. In this study, cermet anode consisting of Ni-Fe alloy combined with oxide ion conductor was investigated. It was found that by using cermet anode of Ni-Fe combined with Ce0.6Mn0.3Fe0.1O2 (CMF), the observed energy density of the cell is improved to be 1109 Wh/Kg-Fe at 10 mA/cm2, 873 K, which is about 92% of the theoretical energy density assuming the formation of Fe3O4 (1290 Wh/Kg-Fe). Cycle stability was also much improved on the cell using Ni-Fe-CMF anode comparing with that of Ni-Fe metal because of suppressed aggregation of Ni by mixing with CMF. Electrochemical charge-discharge measurement at 773 K showed excellent cycle stability over 30 cycles with high energy density (Round trip efficiency is higher than 80%). The excellent performance and stability with operating at lower temperature promise this Fe-air solid oxide battery as the next generation energy storage device for averaging electricity and electric vehicle.

    Original languageEnglish
    Title of host publicationTHERMEC 2013
    PublisherTrans Tech Publications
    Pages1680-1685
    Number of pages6
    Volume783-786
    ISBN (Print)9783038350736
    DOIs
    Publication statusPublished - 2014
    Event8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013 - Las Vegas, NV, United States
    Duration: Dec 2 2013Dec 6 2013

    Publication series

    NameAdvanced Materials Research
    Volume783-786
    ISSN (Print)10226680

    Other

    Other8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013
    Country/TerritoryUnited States
    CityLas Vegas, NV
    Period12/2/1312/6/13

    All Science Journal Classification (ASJC) codes

    • Engineering(all)

    Fingerprint

    Dive into the research topics of 'Reversible solid state Fe-air rechargeable battery using LaGaO3 based oxide ion conducting electrolyte'. Together they form a unique fingerprint.

    Cite this