RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses

Daisuke Kobayashi, Katsunori Murota, Kentaro Itokawa, Hiroko Ejiri, Michael Amoa-Bosompem, Astri Nur Faizah, Mamoru Watanabe, Yoshihide Maekawa, Toshihiko Hayashi, Shinichi Noda, Takeo Yamauchi, Osamu Komagata, Kyoko Sawabe, Haruhiko Isawa

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Tick-borne viruses have emerged recently in many parts of the world, and the discoveries of novel tick-borne viruses have been accelerated by the development of high-throughput sequencing technology. In this study, a cost-efficient small benchtop next-generation sequencer, the Illumina MiniSeq, was used for the RNA virome analysis of questing ticks collected from Hokuriku District, Japan, and assessed for their potential utility in a tick-borne virus surveillance system. We detected two phleboviruses [Kabuto Mountain virus (KAMV) and Okutama tick virus (OKTV)], a coltivirus [Tarumizu tick virus (TarTV)], and a novel iflavirus [Hamaphysalis flava iflavirus (HfIFV)] from tick homogenates and/or cell culture supernatants after virus isolation processes. The number of sequence reads from KAMV and TarTV markedly increased when cell culture supernatants were used, indicating a successful isolation of these viruses. In contrast, OKTV and HfIFV were detected only in tick homogenates but not from cell culture supernatants, suggesting a failure to isolate these viruses. Furthermore, we performed genomic and phylogenetic analyzes of these detected viruses. OKTV and some phleboviruses discovered recently by NGS-based methods were probably deficient in the M genome segment, which are herein proposed as M segment-deficient phlebovirus (MdPV). A phylogenetic analysis of phleboviruses, including MdPV, suggested that Uukuniemi and Kaisodi group viruses and kabutoviruses evolved from an ancestral MdPV, which provides insights into the evolutionary dynamics of phleboviruses as emerging pathogens.

Original languageEnglish
Article number101364
JournalTicks and Tick-borne Diseases
Volume11
Issue number2
DOIs
Publication statusPublished - Mar 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Parasitology
  • Microbiology
  • Insect Science
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses'. Together they form a unique fingerprint.

Cite this