Rock Magnetic Characterization of Returned Samples From Asteroid (162173) Ryugu: Implications for Paleomagnetic Interpretation and Paleointensity Estimation

Masahiko Sato, Yuki Kimura, Satoshi Tanaka, Tadahiro Hatakeyama, Seiji Sugita, Tomoki Nakamuna, Shogo Tachibana, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki OkadaTomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Satoru Nakazawa, Sei ichiro Watanabe, Yuichi Tsuda

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, systematic rock magnetic measurements and saturation isothermal remanent magnetization (SIRM) paleointensity calibration experiments were conducted for the returned samples from C-type asteroid (162173) Ryugu and two carbonaceous chondrites (Orgueil and Tagish Lake) to evaluate the remanence carriers of the Ryugu sample and its ability as a paleomagnetic recorder. Our magnetic measurements show that Ryugu samples exhibit signatures for framboidal magnetite, coarse-grained magnetite, and pyrrhotite, and that framboidal magnetite is the dominant remanence carrier of Ryugu samples in the middle-coercivity range. The SIRM paleointensity constant was obtained for two Ryugu samples, and the median value was 3,318 ± 1,038 μT, which is close to the literature's value based on the average among magnetite, titanomagnetite, pyrrhotite, and FeNi alloys and is widely used for SIRM paleointensity experiments. The paleointensity values estimated using the obtained SIRM paleointensity constant indicate a strong magnetic field of the protoplanetary disk, suggesting that Sun's protoplanetary disk existed at the disk location of Ryugu's parent planetesimal when framboidal magnetite precipitated from the aqueous fluid.

Original languageEnglish
Article numbere2022JE007405
JournalJournal of Geophysical Research: Planets
Volume127
Issue number11
DOIs
Publication statusPublished - Nov 2022

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Rock Magnetic Characterization of Returned Samples From Asteroid (162173) Ryugu: Implications for Paleomagnetic Interpretation and Paleointensity Estimation'. Together they form a unique fingerprint.

Cite this