Role of material-driven fibronectin fibrillogenesis in cell differentiation

Manuel Salmerón-Sánchez, Patricia Rico, David Moratal, Ted T. Lee, Jean E. Schwarzbauer, Andrés J. García

Research output: Contribution to journalArticle

88 Citations (Scopus)

Abstract

Fibronectin (FN) is a ubiquitous extracellular matrix protein (ECM) protein that is organized into fibrillar networks by cells through an integrin-mediated process that involves contractile forces. This assembly allows for the unfolding of the FN molecule, exposing cryptic domains that are not available in the native globular FN structure and activating intracellular signalling complexes. However, organization of FN into a physiological fibrillar network upon adsorption on a material surface has not been observed. Here we demonstrate cell-free, material-induced FN fibrillogenesis into a biological matrix with enhanced cellular activities. We found that simple FN adsorption onto poly(ethyl acrylate) surfaces, but not control polymers, triggered FN organization into a fibrillar network via interactions in the amino-terminal 70 kDa fragment, which is involved in the formation of cell-mediated FN fibrils. Moreover, the material-driven FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules and even type I collagen. Our results demonstrate that molecular assembly of FN can take place at the material interface, giving rise to a physiological protein network similar to fibrillar matrices assembled by cells. This research identifies material surfaces that trigger the organization of extracellular matrix proteins into biological active fibrils and establishes a new paradigm to engineer ECM-mimetic biomaterials.

Original languageEnglish
Pages (from-to)2099-2105
Number of pages7
JournalBiomaterials
Volume32
Issue number8
DOIs
Publication statusPublished - Mar 1 2011
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Role of material-driven fibronectin fibrillogenesis in cell differentiation'. Together they form a unique fingerprint.

  • Cite this

    Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. https://doi.org/10.1016/j.biomaterials.2010.11.057