Roles of hydrogen atmospheres in growth of ultrananocrystalline diamond by pulsed laser deposition

Kenji Hanada, Takashi Nishiyama, Tsuyoshi Yoshitake, Kunihito Nagayama

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The growth of ultrananocrystalline diamond (UNCD) by pulsed laser deposition necessitates hydrogen atmospheres during the deposition. Optical emission spectroscopy was used to study the roles of the hydrogen atmosphere on the UNCD growth. Time-resolved images of a plume that expanded from a laser-irradiation spot toward a substrate were taken using a high-speed ICCD camera equipped with narrow-bandpass filters. While the plume disappeared at the longest within 1 μs in vacuum, the emission from C+ lasted above the substrate surface for approximately 7 microseconds at a hydrogen pressure of 53.3 Pa. Since emission lifetimes of species are approximately 10 nanoseconds, this implies that C+ ions collided actively for such a long time. The hydrogen atmosphere has a role of forming a high number density of C + ions. In addition, we believe that atomic hydrogen that might be generated by the collisions with carbon species contributes to the UNCD crystallite formation by their terminating the dangling bonds of carbon clusters as theoretically predicted in previous reports.

Original languageEnglish
Title of host publicationTHERMEC 2009
Pages1685-1690
Number of pages6
DOIs
Publication statusPublished - Feb 9 2010
Event6th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2009 - Berlin, Germany
Duration: Aug 25 2009Aug 29 2009

Publication series

NameMaterials Science Forum
Volume638-642
ISSN (Print)0255-5476

Other

Other6th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2009
CountryGermany
CityBerlin
Period8/25/098/29/09

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Roles of hydrogen atmospheres in growth of ultrananocrystalline diamond by pulsed laser deposition'. Together they form a unique fingerprint.

Cite this