TY - JOUR
T1 - Ruthenium nanoparticles on nano-level-con trolled carbon supports as highly effective catalysts for arene hydrogenation
AU - Takasaki, Mikihiro
AU - Motoyama, Yukihiro
AU - Higashi, Kenji
AU - Yoon, Seong Ho
AU - Mochida, Isao
AU - Nagashima, Hideo
PY - 2007
Y1 - 2007
N2 - The reaction of three types of carbon nanofibers (CNFs; platelet: CNF-P, tubular: CNF-T, herringbone: CNF-H) with [Ru3(CO)12] in toluene heated at reflux provided the corresponding CNF-supported ruthenium nanoparticles, Ru/CNFs (Ru content = 1.1-3.8 wt %). TEM studies of these Ru/CNFs revealed that size-controlled Ru nanoparticles (2-4 nm) exist on the CNFs, and that their location was dependent on the surface nanostructures of the CNFs : on the edge of the graphite layers (CNF-P), in the tubes and on the surface (CNF-T), and between the layers and on the edge (CNF-H). Among these Ru/CNFs, Ru/CNF-P showed excellent catalytic activity towards hydrogenation of toluene with high reproducibility; the reaction proceeded without leaching of the Ru species, and the catalyst was reusable. The total turnover number of the five recycling experiments for toluene hydrogenation reached over 180000 (mol toluene) (mol Ru)-1. Ru/CNF-P was also effective for the hydrogenation of functionalized benzene derivatives and pyridine. Hydrogenolysis of benzylic C-O and C-N bonds has not yet been observed. Use of poly(ethylene glycol)s (PEGs) as a solvent made possible the biphasic catalytic hydrogenation of toluene. After the reaction, the methylcyclohexane formed was separated by decantation without contamination of the ruthenium species and PEG. The insoluble PEG phase containing all of the Ru/CNF was recoverable and reusable as the catalyst without loss of activity.
AB - The reaction of three types of carbon nanofibers (CNFs; platelet: CNF-P, tubular: CNF-T, herringbone: CNF-H) with [Ru3(CO)12] in toluene heated at reflux provided the corresponding CNF-supported ruthenium nanoparticles, Ru/CNFs (Ru content = 1.1-3.8 wt %). TEM studies of these Ru/CNFs revealed that size-controlled Ru nanoparticles (2-4 nm) exist on the CNFs, and that their location was dependent on the surface nanostructures of the CNFs : on the edge of the graphite layers (CNF-P), in the tubes and on the surface (CNF-T), and between the layers and on the edge (CNF-H). Among these Ru/CNFs, Ru/CNF-P showed excellent catalytic activity towards hydrogenation of toluene with high reproducibility; the reaction proceeded without leaching of the Ru species, and the catalyst was reusable. The total turnover number of the five recycling experiments for toluene hydrogenation reached over 180000 (mol toluene) (mol Ru)-1. Ru/CNF-P was also effective for the hydrogenation of functionalized benzene derivatives and pyridine. Hydrogenolysis of benzylic C-O and C-N bonds has not yet been observed. Use of poly(ethylene glycol)s (PEGs) as a solvent made possible the biphasic catalytic hydrogenation of toluene. After the reaction, the methylcyclohexane formed was separated by decantation without contamination of the ruthenium species and PEG. The insoluble PEG phase containing all of the Ru/CNF was recoverable and reusable as the catalyst without loss of activity.
UR - http://www.scopus.com/inward/record.url?scp=36949025224&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36949025224&partnerID=8YFLogxK
U2 - 10.1002/asia.200700175
DO - 10.1002/asia.200700175
M3 - Article
C2 - 17973283
AN - SCOPUS:36949025224
SN - 1861-4728
VL - 2
SP - 1524
EP - 1533
JO - Chemistry - An Asian Journal
JF - Chemistry - An Asian Journal
IS - 12
ER -