SCFFbxw7 ubiquitylates KLF7 for degradation in a manner dependent on GSK-3-mediated phosphorylation

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


The biological relation between ubiquitin ligases and their substrates has been largely unclear. We previously developed a method—differential proteomics-based identification of ubiquitylation substrates (DiPIUS)—for the comprehensive identification of substrates for a given ubiquitin ligase. We have now applied DiPIUS to the F-box protein Fbxw7 in three cell lines (mHepa, Neuro2A and C2C12) and thereby identified Krüppel-like factor 7 (KLF7) as a candidate substrate of the SCFFbxw7 ubiquitin ligase complex. KLF7 was shown to interact with Fbxw7 and to undergo Fbxw7-mediated polyubiquitylation. The stability of KLF7 was increased by depletion of Fbxw7, mutation of a putative Cdc4 phosphodegron (CPD) of KLF7 or exposure to inhibitors of glycogen synthase kinase-3 (GSK-3). Over-expression of Fbxw7 in Neuro2A cells down-regulated expression of the p21Cip1 gene, which is a transcriptional target of KLF7 in neuronal differentiation and maintenance. Despite the presence of an almost identical CPD sequence in KLF6, the closest paralog of KLF7, mutation of this sequence affected neither the interaction of KLF6 with Fbxw7 nor its half-life. Our results suggest that KLF7, but not KLF6, is a bona fide substrate of SCFFbxw7, and that control of KLF7 abundance by SCFFbxw7 might contribute to the regulation of neuronal differentiation and maintenance.

Original languageEnglish
Pages (from-to)354-365
Number of pages12
JournalGenes to Cells
Issue number5
Publication statusPublished - May 2019

All Science Journal Classification (ASJC) codes

  • Genetics
  • Cell Biology


Dive into the research topics of 'SCFFbxw7 ubiquitylates KLF7 for degradation in a manner dependent on GSK-3-mediated phosphorylation'. Together they form a unique fingerprint.

Cite this