Scratching counteracts il-13 signaling by upregulating the decoy receptor il-13rα2 in keratinocytes

Dugarmaa Ulzii, Makiko Kido-Nakahara, Takeshi Nakahara, Gaku Tsuji, Kazuhisa Furue, Akiko Hashimoto-Hachiya, Masutaka Furue

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

The vicious itch–scratch cycle is a cardinal feature of atopic dermatitis (AD), in which IL-13 signaling plays a dominant role. Keratinocytes express two receptors: The heterodimeric IL-4Rα/IL-13Rα1 and IL-13Rα2. The former one transduces a functional IL-13 signal, whereas the latter IL-13Rα2 works as a nonfunctional decoy receptor. To examine whether scratch injury affects the expression of IL-4Rα, IL-13Rα1, and IL-13Rα2, we scratched confluent keratinocyte sheets and examined the expression of three IL-13 receptors using quantitative real-time PCR (qRT-PCR) and immunofluorescence techniques. Scratch injuries significantly upregulated the expression of IL13RA2 in a scratch line number-dependent manner. Scratch-induced IL13RA2 upregulation was synergistically enhanced in the simultaneous presence of IL-13. In contrast, scratch injuries did not alter the expression of IL4R and IL13RA1, even in the presence of IL-13. Scratch-induced IL13RA2 expression was dependent on ERK1/2 and p38 MAPK signals. The expression of IL-13Rα2 protein was indeed augmented in the scratch edge area and was also overexpressed in lichenified lesional AD skin. IL-13 inhibited the expression of involucrin, an important epidermal terminal differentiation molecule. IL-13-mediated downregulation of involucrin was attenuated in IL-13Rα2-overexpressed keratinocytes, confirming the decoy function of IL-13Rα2. Our findings indicate that scratching upregulates the expression of the IL-13 decoy receptor IL-13Rα2 and counteracts IL-13 signaling.

Original languageEnglish
Article number3324
JournalInternational journal of molecular sciences
Volume20
Issue number13
DOIs
Publication statusPublished - Jul 1 2019

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Scratching counteracts il-13 signaling by upregulating the decoy receptor il-13rα2 in keratinocytes'. Together they form a unique fingerprint.

Cite this