Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury

Noboru Yamashita, Kazuhisa Sakai, Shigeki Furuya, Masahiko Watanabe

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Non-essential amino acid L-serine functions as a highly potent, glia-derived neurotrophic factor, because it is a precursor for syntheses of proteins, other amino acids, membrane lipids, and nucleotides, and also because its biosynthetic enzyme 3-phosphoglycerate dehydrogenase (3PGDH) is preferentially expressed in particular glial cells within the brain. Here we pursued 3PGDH expression in peripheral nerves and its change after crush injury. In the pathway of rat sciatic nerves, 3PGDH was selectively expressed in non-neuronal elements: Schwann sheaths and endoneurial fibroblasts in sciatic nerves, satellite cells in dorsal root ganglia, and astrocytes and oligodendrocytes in the spinal ventral horn. In contrast, 3PGDH was immunonegative in axons, somata of spinal motoneurons and ganglion cells, and endoneurial macrophages. One week after crush injury, 3PGDH was upregulated in the distal segment of injured nerves, where 3PGDH was intensified in activated Schwann cells and fibroblasts. 3PGDH was still negative in activated macrophages, which were instead associated or surrounded by activated Schwann cells with intensified 3PGDH. These results suggest that in the peripheral nervous system, these non-neuronal cells synthesize and may supply L-serine to satisfy metabolic demands for maintenance and regeneration of peripheral nerves and for proliferation and activation of macrophages upon nerve injury.

Original languageEnglish
Pages (from-to)429-436
Number of pages8
JournalArchives of Histology and Cytology
Volume66
Issue number5
DOIs
Publication statusPublished - Dec 1 2003
Externally publishedYes

Fingerprint

Phosphoglycerate Dehydrogenase
Schwann Cells
Sciatic Nerve
Neuroglia
Serine
Up-Regulation
Fibroblasts
Enzymes
Spinal Ganglia
Peripheral Nerves
Neurilemma
Macrophages
Amino Acids
Protein Precursors
Macrophage Activation
Crush Injuries
Oligodendroglia
Peripheral Nervous System
Nerve Growth Factors
Carisoprodol

All Science Journal Classification (ASJC) codes

  • Histology

Cite this

@article{21b73a79706d4398adc55a18c0f1cf5d,
title = "Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury",
abstract = "Non-essential amino acid L-serine functions as a highly potent, glia-derived neurotrophic factor, because it is a precursor for syntheses of proteins, other amino acids, membrane lipids, and nucleotides, and also because its biosynthetic enzyme 3-phosphoglycerate dehydrogenase (3PGDH) is preferentially expressed in particular glial cells within the brain. Here we pursued 3PGDH expression in peripheral nerves and its change after crush injury. In the pathway of rat sciatic nerves, 3PGDH was selectively expressed in non-neuronal elements: Schwann sheaths and endoneurial fibroblasts in sciatic nerves, satellite cells in dorsal root ganglia, and astrocytes and oligodendrocytes in the spinal ventral horn. In contrast, 3PGDH was immunonegative in axons, somata of spinal motoneurons and ganglion cells, and endoneurial macrophages. One week after crush injury, 3PGDH was upregulated in the distal segment of injured nerves, where 3PGDH was intensified in activated Schwann cells and fibroblasts. 3PGDH was still negative in activated macrophages, which were instead associated or surrounded by activated Schwann cells with intensified 3PGDH. These results suggest that in the peripheral nervous system, these non-neuronal cells synthesize and may supply L-serine to satisfy metabolic demands for maintenance and regeneration of peripheral nerves and for proliferation and activation of macrophages upon nerve injury.",
author = "Noboru Yamashita and Kazuhisa Sakai and Shigeki Furuya and Masahiko Watanabe",
year = "2003",
month = "12",
day = "1",
doi = "10.1679/aohc.66.429",
language = "English",
volume = "66",
pages = "429--436",
journal = "Archives of Histology and Cytology",
issn = "0914-9465",
publisher = "Japan Society of Histological Documentation",
number = "5",

}

TY - JOUR

T1 - Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury

AU - Yamashita, Noboru

AU - Sakai, Kazuhisa

AU - Furuya, Shigeki

AU - Watanabe, Masahiko

PY - 2003/12/1

Y1 - 2003/12/1

N2 - Non-essential amino acid L-serine functions as a highly potent, glia-derived neurotrophic factor, because it is a precursor for syntheses of proteins, other amino acids, membrane lipids, and nucleotides, and also because its biosynthetic enzyme 3-phosphoglycerate dehydrogenase (3PGDH) is preferentially expressed in particular glial cells within the brain. Here we pursued 3PGDH expression in peripheral nerves and its change after crush injury. In the pathway of rat sciatic nerves, 3PGDH was selectively expressed in non-neuronal elements: Schwann sheaths and endoneurial fibroblasts in sciatic nerves, satellite cells in dorsal root ganglia, and astrocytes and oligodendrocytes in the spinal ventral horn. In contrast, 3PGDH was immunonegative in axons, somata of spinal motoneurons and ganglion cells, and endoneurial macrophages. One week after crush injury, 3PGDH was upregulated in the distal segment of injured nerves, where 3PGDH was intensified in activated Schwann cells and fibroblasts. 3PGDH was still negative in activated macrophages, which were instead associated or surrounded by activated Schwann cells with intensified 3PGDH. These results suggest that in the peripheral nervous system, these non-neuronal cells synthesize and may supply L-serine to satisfy metabolic demands for maintenance and regeneration of peripheral nerves and for proliferation and activation of macrophages upon nerve injury.

AB - Non-essential amino acid L-serine functions as a highly potent, glia-derived neurotrophic factor, because it is a precursor for syntheses of proteins, other amino acids, membrane lipids, and nucleotides, and also because its biosynthetic enzyme 3-phosphoglycerate dehydrogenase (3PGDH) is preferentially expressed in particular glial cells within the brain. Here we pursued 3PGDH expression in peripheral nerves and its change after crush injury. In the pathway of rat sciatic nerves, 3PGDH was selectively expressed in non-neuronal elements: Schwann sheaths and endoneurial fibroblasts in sciatic nerves, satellite cells in dorsal root ganglia, and astrocytes and oligodendrocytes in the spinal ventral horn. In contrast, 3PGDH was immunonegative in axons, somata of spinal motoneurons and ganglion cells, and endoneurial macrophages. One week after crush injury, 3PGDH was upregulated in the distal segment of injured nerves, where 3PGDH was intensified in activated Schwann cells and fibroblasts. 3PGDH was still negative in activated macrophages, which were instead associated or surrounded by activated Schwann cells with intensified 3PGDH. These results suggest that in the peripheral nervous system, these non-neuronal cells synthesize and may supply L-serine to satisfy metabolic demands for maintenance and regeneration of peripheral nerves and for proliferation and activation of macrophages upon nerve injury.

UR - http://www.scopus.com/inward/record.url?scp=1642504806&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1642504806&partnerID=8YFLogxK

U2 - 10.1679/aohc.66.429

DO - 10.1679/aohc.66.429

M3 - Article

C2 - 15018145

AN - SCOPUS:1642504806

VL - 66

SP - 429

EP - 436

JO - Archives of Histology and Cytology

JF - Archives of Histology and Cytology

SN - 0914-9465

IS - 5

ER -