Selective removal of phosphate using La-porous carbon composites from aqueous solutions

Batch and column studies

Paulmanickam Koilraj, Keiko Sasaki

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Porous carbon composites containing varying La contents were synthesized and studied for the sorption of phosphate. The phosphate sorption capacities increased with increasing La content and showed an almost complete La consumption efficiency (P/La molar ratio of 0.936) for the composite containing a La(OH)3/porous carbon mass ratio of 0.1 (La0.1-PC). Phosphate sorption by these composite materials occurred through precipitation of LaPO4 supported by PXRD, XPS and EDS analyses. Kinetic studies revealed that phosphate sorption by the La0.1-PC composite was rapid and reached equilibrium within 1 h compared to the composites containing higher mass ratio of La(OH)3. The sorption capacity of phosphate was not reduced in the presence 20 mM chloride and 20 mM sulfate, but was disturbed by 20 mM carbonate. The phosphate sorption in the presence of 25 mg/L humic acid was maintained along with the adsorption of dissolved humic acid by electrostatic adsorption onto the carbon support. Interestingly, the phosphate sorption capacity in seawater was twice that in fresh water, likely because the Ca2+ and Mg2+ ions in seawater enhanced the precipitation of phosphate on the surface of La in the La-PC composite. Column experiments verified that the La0.1-PC composite was effective for the continuous treatment of phosphate. The current outcome suggests that the La-PC composite can be used as a multifunctional sorbent for the remediation of phosphate along with alkaline metal ions (Ca2+ and Mg2+) as well as the removal of humic substances in wastewaters. Moreover, the spent sorbent could be repurposed as a phosphate plant fertilizer, where it would reduce the cost of disposal and increase the commercial value.

Original languageEnglish
Pages (from-to)1059-1068
Number of pages10
JournalChemical Engineering Journal
Volume317
DOIs
Publication statusPublished - Jan 1 2017

Fingerprint

Phosphates
Carbon
aqueous solution
phosphate
Sorption
carbon
Composite materials
sorption
Humic Substances
Sorbents
Seawater
humic acid
removal
seawater
adsorption
Adsorption
ion
Carbonates
Fertilizers
humic substance

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Cite this

Selective removal of phosphate using La-porous carbon composites from aqueous solutions : Batch and column studies. / Koilraj, Paulmanickam; Sasaki, Keiko.

In: Chemical Engineering Journal, Vol. 317, 01.01.2017, p. 1059-1068.

Research output: Contribution to journalArticle

@article{fba3a0339ce54787ab1c109cd9f71b19,
title = "Selective removal of phosphate using La-porous carbon composites from aqueous solutions: Batch and column studies",
abstract = "Porous carbon composites containing varying La contents were synthesized and studied for the sorption of phosphate. The phosphate sorption capacities increased with increasing La content and showed an almost complete La consumption efficiency (P/La molar ratio of 0.936) for the composite containing a La(OH)3/porous carbon mass ratio of 0.1 (La0.1-PC). Phosphate sorption by these composite materials occurred through precipitation of LaPO4 supported by PXRD, XPS and EDS analyses. Kinetic studies revealed that phosphate sorption by the La0.1-PC composite was rapid and reached equilibrium within 1 h compared to the composites containing higher mass ratio of La(OH)3. The sorption capacity of phosphate was not reduced in the presence 20 mM chloride and 20 mM sulfate, but was disturbed by 20 mM carbonate. The phosphate sorption in the presence of 25 mg/L humic acid was maintained along with the adsorption of dissolved humic acid by electrostatic adsorption onto the carbon support. Interestingly, the phosphate sorption capacity in seawater was twice that in fresh water, likely because the Ca2+ and Mg2+ ions in seawater enhanced the precipitation of phosphate on the surface of La in the La-PC composite. Column experiments verified that the La0.1-PC composite was effective for the continuous treatment of phosphate. The current outcome suggests that the La-PC composite can be used as a multifunctional sorbent for the remediation of phosphate along with alkaline metal ions (Ca2+ and Mg2+) as well as the removal of humic substances in wastewaters. Moreover, the spent sorbent could be repurposed as a phosphate plant fertilizer, where it would reduce the cost of disposal and increase the commercial value.",
author = "Paulmanickam Koilraj and Keiko Sasaki",
year = "2017",
month = "1",
day = "1",
doi = "10.1016/j.cej.2017.02.075",
language = "English",
volume = "317",
pages = "1059--1068",
journal = "Chemical Engineering Journal",
issn = "1385-8947",
publisher = "Elsevier",

}

TY - JOUR

T1 - Selective removal of phosphate using La-porous carbon composites from aqueous solutions

T2 - Batch and column studies

AU - Koilraj, Paulmanickam

AU - Sasaki, Keiko

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Porous carbon composites containing varying La contents were synthesized and studied for the sorption of phosphate. The phosphate sorption capacities increased with increasing La content and showed an almost complete La consumption efficiency (P/La molar ratio of 0.936) for the composite containing a La(OH)3/porous carbon mass ratio of 0.1 (La0.1-PC). Phosphate sorption by these composite materials occurred through precipitation of LaPO4 supported by PXRD, XPS and EDS analyses. Kinetic studies revealed that phosphate sorption by the La0.1-PC composite was rapid and reached equilibrium within 1 h compared to the composites containing higher mass ratio of La(OH)3. The sorption capacity of phosphate was not reduced in the presence 20 mM chloride and 20 mM sulfate, but was disturbed by 20 mM carbonate. The phosphate sorption in the presence of 25 mg/L humic acid was maintained along with the adsorption of dissolved humic acid by electrostatic adsorption onto the carbon support. Interestingly, the phosphate sorption capacity in seawater was twice that in fresh water, likely because the Ca2+ and Mg2+ ions in seawater enhanced the precipitation of phosphate on the surface of La in the La-PC composite. Column experiments verified that the La0.1-PC composite was effective for the continuous treatment of phosphate. The current outcome suggests that the La-PC composite can be used as a multifunctional sorbent for the remediation of phosphate along with alkaline metal ions (Ca2+ and Mg2+) as well as the removal of humic substances in wastewaters. Moreover, the spent sorbent could be repurposed as a phosphate plant fertilizer, where it would reduce the cost of disposal and increase the commercial value.

AB - Porous carbon composites containing varying La contents were synthesized and studied for the sorption of phosphate. The phosphate sorption capacities increased with increasing La content and showed an almost complete La consumption efficiency (P/La molar ratio of 0.936) for the composite containing a La(OH)3/porous carbon mass ratio of 0.1 (La0.1-PC). Phosphate sorption by these composite materials occurred through precipitation of LaPO4 supported by PXRD, XPS and EDS analyses. Kinetic studies revealed that phosphate sorption by the La0.1-PC composite was rapid and reached equilibrium within 1 h compared to the composites containing higher mass ratio of La(OH)3. The sorption capacity of phosphate was not reduced in the presence 20 mM chloride and 20 mM sulfate, but was disturbed by 20 mM carbonate. The phosphate sorption in the presence of 25 mg/L humic acid was maintained along with the adsorption of dissolved humic acid by electrostatic adsorption onto the carbon support. Interestingly, the phosphate sorption capacity in seawater was twice that in fresh water, likely because the Ca2+ and Mg2+ ions in seawater enhanced the precipitation of phosphate on the surface of La in the La-PC composite. Column experiments verified that the La0.1-PC composite was effective for the continuous treatment of phosphate. The current outcome suggests that the La-PC composite can be used as a multifunctional sorbent for the remediation of phosphate along with alkaline metal ions (Ca2+ and Mg2+) as well as the removal of humic substances in wastewaters. Moreover, the spent sorbent could be repurposed as a phosphate plant fertilizer, where it would reduce the cost of disposal and increase the commercial value.

UR - http://www.scopus.com/inward/record.url?scp=85013421963&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85013421963&partnerID=8YFLogxK

U2 - 10.1016/j.cej.2017.02.075

DO - 10.1016/j.cej.2017.02.075

M3 - Article

VL - 317

SP - 1059

EP - 1068

JO - Chemical Engineering Journal

JF - Chemical Engineering Journal

SN - 1385-8947

ER -