Sensitivity of the ventilation process in the North Pacific to Eddy-induced tracer transport

Takahiro Endo, Yanli Jia, Kelvin J. Richards

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

A coarse-resolution isopycnal model coupled with a bulk mixed layer model is used to examine the effect of isopycnal thickness diffusion, which parameterizes the subgrid-scale eddy-induced tracer transport, on ventilation of the North Pacific Ocean. Three numerical experiments with thickness diffusivities of 0 m2 s-1 and around 500 and 2000 m2 s-1 are carried out. The model successfully reproduces a deep winter mixed layer in the subarctic North Pacific, leading to well-formed mode waters and the subtropical countercurrent in the experiment with thickness diffusivity around 500 m2 s-1. The annual-mean subduction rate has peaks at densities of 25.0-25.4 and 26.4 σθ. The former peak spans the densities of North Pacific Subtropical Mode Water and North Pacific Eastern Subtropical Mode Water, whereas the latter peak is centered near the density of North Pacific Central Mode Water. The annual mean obduction rate also has the former peak and a slight enhancement corresponding to the latter peak. The Kuroshio plays a crucial role in obduction of North Pacific Subtropical Mode Water by transferring it northward from the permanent pycnocline to the seasonal pycnocline around the Kuroshio Extension, the importance of which has been overlooked in previous studies. In contrast to the simple expectation that the eddy-induced tracer transport enhances the ventilation process, stronger circulation with lower thickness diffusion increases the annual-mean subduction rate by carrying the subducted water quickly away from the seasonal pycnocline into the permanent pycnocline, as well as the annual-mean obduction rate by transferring much water from the permanent pycnocline to the seasonal pycnocline. As thickness diffusivity increases, the former peaks in the subduction and obduction rates occur at lighter densities, whereas the latter peak in the subduction rate is shifted toward higher densities.

Original languageEnglish
Pages (from-to)1895-1911
Number of pages17
JournalJournal of Physical Oceanography
Volume36
Issue number10
DOIs
Publication statusPublished - Oct 2006
Externally publishedYes

Fingerprint

pycnocline
mode water
ventilation
eddy
obduction
tracer
subduction
diffusivity
mixed layer
countercurrent
rate
experiment
water
winter

All Science Journal Classification (ASJC) codes

  • Oceanography

Cite this

Sensitivity of the ventilation process in the North Pacific to Eddy-induced tracer transport. / Endo, Takahiro; Jia, Yanli; Richards, Kelvin J.

In: Journal of Physical Oceanography, Vol. 36, No. 10, 10.2006, p. 1895-1911.

Research output: Contribution to journalArticle

@article{bd57154604f54ad497f9b51a37701b0c,
title = "Sensitivity of the ventilation process in the North Pacific to Eddy-induced tracer transport",
abstract = "A coarse-resolution isopycnal model coupled with a bulk mixed layer model is used to examine the effect of isopycnal thickness diffusion, which parameterizes the subgrid-scale eddy-induced tracer transport, on ventilation of the North Pacific Ocean. Three numerical experiments with thickness diffusivities of 0 m2 s-1 and around 500 and 2000 m2 s-1 are carried out. The model successfully reproduces a deep winter mixed layer in the subarctic North Pacific, leading to well-formed mode waters and the subtropical countercurrent in the experiment with thickness diffusivity around 500 m2 s-1. The annual-mean subduction rate has peaks at densities of 25.0-25.4 and 26.4 σθ. The former peak spans the densities of North Pacific Subtropical Mode Water and North Pacific Eastern Subtropical Mode Water, whereas the latter peak is centered near the density of North Pacific Central Mode Water. The annual mean obduction rate also has the former peak and a slight enhancement corresponding to the latter peak. The Kuroshio plays a crucial role in obduction of North Pacific Subtropical Mode Water by transferring it northward from the permanent pycnocline to the seasonal pycnocline around the Kuroshio Extension, the importance of which has been overlooked in previous studies. In contrast to the simple expectation that the eddy-induced tracer transport enhances the ventilation process, stronger circulation with lower thickness diffusion increases the annual-mean subduction rate by carrying the subducted water quickly away from the seasonal pycnocline into the permanent pycnocline, as well as the annual-mean obduction rate by transferring much water from the permanent pycnocline to the seasonal pycnocline. As thickness diffusivity increases, the former peaks in the subduction and obduction rates occur at lighter densities, whereas the latter peak in the subduction rate is shifted toward higher densities.",
author = "Takahiro Endo and Yanli Jia and Richards, {Kelvin J.}",
year = "2006",
month = "10",
doi = "10.1175/JPO2941.1",
language = "English",
volume = "36",
pages = "1895--1911",
journal = "Journal of Physical Oceanography",
issn = "0022-3670",
publisher = "American Meteorological Society",
number = "10",

}

TY - JOUR

T1 - Sensitivity of the ventilation process in the North Pacific to Eddy-induced tracer transport

AU - Endo, Takahiro

AU - Jia, Yanli

AU - Richards, Kelvin J.

PY - 2006/10

Y1 - 2006/10

N2 - A coarse-resolution isopycnal model coupled with a bulk mixed layer model is used to examine the effect of isopycnal thickness diffusion, which parameterizes the subgrid-scale eddy-induced tracer transport, on ventilation of the North Pacific Ocean. Three numerical experiments with thickness diffusivities of 0 m2 s-1 and around 500 and 2000 m2 s-1 are carried out. The model successfully reproduces a deep winter mixed layer in the subarctic North Pacific, leading to well-formed mode waters and the subtropical countercurrent in the experiment with thickness diffusivity around 500 m2 s-1. The annual-mean subduction rate has peaks at densities of 25.0-25.4 and 26.4 σθ. The former peak spans the densities of North Pacific Subtropical Mode Water and North Pacific Eastern Subtropical Mode Water, whereas the latter peak is centered near the density of North Pacific Central Mode Water. The annual mean obduction rate also has the former peak and a slight enhancement corresponding to the latter peak. The Kuroshio plays a crucial role in obduction of North Pacific Subtropical Mode Water by transferring it northward from the permanent pycnocline to the seasonal pycnocline around the Kuroshio Extension, the importance of which has been overlooked in previous studies. In contrast to the simple expectation that the eddy-induced tracer transport enhances the ventilation process, stronger circulation with lower thickness diffusion increases the annual-mean subduction rate by carrying the subducted water quickly away from the seasonal pycnocline into the permanent pycnocline, as well as the annual-mean obduction rate by transferring much water from the permanent pycnocline to the seasonal pycnocline. As thickness diffusivity increases, the former peaks in the subduction and obduction rates occur at lighter densities, whereas the latter peak in the subduction rate is shifted toward higher densities.

AB - A coarse-resolution isopycnal model coupled with a bulk mixed layer model is used to examine the effect of isopycnal thickness diffusion, which parameterizes the subgrid-scale eddy-induced tracer transport, on ventilation of the North Pacific Ocean. Three numerical experiments with thickness diffusivities of 0 m2 s-1 and around 500 and 2000 m2 s-1 are carried out. The model successfully reproduces a deep winter mixed layer in the subarctic North Pacific, leading to well-formed mode waters and the subtropical countercurrent in the experiment with thickness diffusivity around 500 m2 s-1. The annual-mean subduction rate has peaks at densities of 25.0-25.4 and 26.4 σθ. The former peak spans the densities of North Pacific Subtropical Mode Water and North Pacific Eastern Subtropical Mode Water, whereas the latter peak is centered near the density of North Pacific Central Mode Water. The annual mean obduction rate also has the former peak and a slight enhancement corresponding to the latter peak. The Kuroshio plays a crucial role in obduction of North Pacific Subtropical Mode Water by transferring it northward from the permanent pycnocline to the seasonal pycnocline around the Kuroshio Extension, the importance of which has been overlooked in previous studies. In contrast to the simple expectation that the eddy-induced tracer transport enhances the ventilation process, stronger circulation with lower thickness diffusion increases the annual-mean subduction rate by carrying the subducted water quickly away from the seasonal pycnocline into the permanent pycnocline, as well as the annual-mean obduction rate by transferring much water from the permanent pycnocline to the seasonal pycnocline. As thickness diffusivity increases, the former peaks in the subduction and obduction rates occur at lighter densities, whereas the latter peak in the subduction rate is shifted toward higher densities.

UR - http://www.scopus.com/inward/record.url?scp=33750902077&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33750902077&partnerID=8YFLogxK

U2 - 10.1175/JPO2941.1

DO - 10.1175/JPO2941.1

M3 - Article

VL - 36

SP - 1895

EP - 1911

JO - Journal of Physical Oceanography

JF - Journal of Physical Oceanography

SN - 0022-3670

IS - 10

ER -