TY - JOUR
T1 - Shear adhesive strength between epoxy resin and copper surfaces
T2 - a density functional theory study
AU - Sumiya, Yosuke
AU - Tsuji, Yuta
AU - Yoshizawa, Kazunari
N1 - Funding Information:
This work was supported by KAKENHI grants (numbers JP21K04996 and JP22H00335) from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) through the MEXT projects Integrated Research Consortium on Chemical Sciences, Cooperative Research Program of Network Joint Research Center for Materials and Devices and Elements Strategy Initiative to Form Core Research Center, and by JST-CREST JPMJCR15P5 and JST-Mirai JPMJMI18A2. The computations in this work were primarily performed using computer facilities at the Research Institute for Information Technology, Kyushu University. Y. T. is grateful for a JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Discrete Geometric Analysis for Materials Design, grant number JP20H04643, and Mixed Anion, grant number JP19H04700) and a Grant-in-Aid for Transformative Research Areas (A) “Supra-ceramics” (grant number JP22H05146).
Publisher Copyright:
© 2022 The Royal Society of Chemistry.
PY - 2022
Y1 - 2022
N2 - Adhesive strength varies greatly with direction; various adhesion tests have been conducted. In this study, the shear and tensile adhesive strength of epoxy resin for copper (Cu) and copper oxide (Cu2O) surfaces were estimated based on quantum chemical calculations. Here, density functional theory (DFT) calculations with dispersion correction were used. In the tensile process, the entire epoxy resin is peeled off vertically, whereas in the shear process, a force parallel to the adhesive surface is applied. Then, a bending moment acts on the adhesive layer, and a total force (stress) inclined at an angle θ with respect to the adherend surface is applied to the adhesive interface. We computed adhesive stress-displacement curves for each θ exhaustively and discussed the changes. When θ equals 90°, it corresponds to a tensile process. As θ decreases from 90°, the shear adhesive stress on both surfaces decreases slowly. When θ is less than 30°, the constraint to the surface causes periodic changes in the adhesive stress curves. The constraint to the Cu2O surface is especially strong, and this change is large. This periodicity is similar to the stick-slip phenomenon in tribology. To further understand the shear adhesive forces, force decomposition analysis was performed, revealing that the periodicity of the adhesive stress originates from the DFT contribution rather than the dispersion one. The procedure proposed in this study for estimating shear adhesive strength is expected to be useful in the evaluation and prediction of adhesive and adherend properties.
AB - Adhesive strength varies greatly with direction; various adhesion tests have been conducted. In this study, the shear and tensile adhesive strength of epoxy resin for copper (Cu) and copper oxide (Cu2O) surfaces were estimated based on quantum chemical calculations. Here, density functional theory (DFT) calculations with dispersion correction were used. In the tensile process, the entire epoxy resin is peeled off vertically, whereas in the shear process, a force parallel to the adhesive surface is applied. Then, a bending moment acts on the adhesive layer, and a total force (stress) inclined at an angle θ with respect to the adherend surface is applied to the adhesive interface. We computed adhesive stress-displacement curves for each θ exhaustively and discussed the changes. When θ equals 90°, it corresponds to a tensile process. As θ decreases from 90°, the shear adhesive stress on both surfaces decreases slowly. When θ is less than 30°, the constraint to the surface causes periodic changes in the adhesive stress curves. The constraint to the Cu2O surface is especially strong, and this change is large. This periodicity is similar to the stick-slip phenomenon in tribology. To further understand the shear adhesive forces, force decomposition analysis was performed, revealing that the periodicity of the adhesive stress originates from the DFT contribution rather than the dispersion one. The procedure proposed in this study for estimating shear adhesive strength is expected to be useful in the evaluation and prediction of adhesive and adherend properties.
UR - http://www.scopus.com/inward/record.url?scp=85142270107&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142270107&partnerID=8YFLogxK
U2 - 10.1039/d2cp03354b
DO - 10.1039/d2cp03354b
M3 - Article
C2 - 36325949
AN - SCOPUS:85142270107
SN - 1463-9076
VL - 15
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
ER -