Shear strength measurement of Gum Metal during high-pressure torsion

Tadahiko Furuta, Shigeru Kuramoto, Naoyuki Nagasako, Zenji Horita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In the present study, in situ measurements of applied torque and compressive load were conducted during high-pressure torsion (HPT) on Ti-23%Nb-0.7%Ta-2.0%Zr-1.2%O (in at %), Gum Metal, by using four active strain-gage method. The shear stress was then calculated from the measured torque. The in situ measurements revealed that the maximum shear stress reaches ∼2 GPa during HPT. This value is comparable to the ideal shear strength of Gum Metal, which was reported as ∼1.8 GPa from experiments using single crystals. The deformation mechanism strongly depends on body-centered cubic (bcc) phase stability at an early stage of HPT straining, where the shear stress is well below the ideal shear strength. On the other hand, the deformation mechanism may be insensitive to the bcc phase stability at a later stage of HPT straining, where plastic deformation occurs at a strength close to the ideal shear strength.

Original languageEnglish
Title of host publicationTHERMEC 2011
Pages1769-1774
Number of pages6
DOIs
Publication statusPublished - Jan 30 2012
Event7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011 - Quebec City, QC, Canada
Duration: Aug 1 2011Aug 5 2011

Publication series

NameMaterials Science Forum
Volume706-709
ISSN (Print)0255-5476

Other

Other7th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC'2011
CountryCanada
CityQuebec City, QC
Period8/1/118/5/11

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Shear strength measurement of Gum Metal during high-pressure torsion'. Together they form a unique fingerprint.

Cite this