SHRSP/Izm and WKY/NCrlCrlj rats having a missense mutation in Abcg5 deposited plant sterols in the body, but did not change their biliary secretion and lymphatic absorption-comparison with Jcl:Wistar and WKY/Izm rats

Masaki Kato, Yusuke Ito, Yasutake Tanaka, Masao Sato, Katsumi Imaizumi, Nao Inoue, Ikuo Ikeda

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We had previously found plant sterols deposited in the bodies of stroke-prone spontaneously hypertensive rats (SHRSP)/Sea and Wistar Kyoto (WKY)/NCrlCrlj rats that had a missense mutation in the Abcg5 cDNA sequence that coded for ATP-binding cassette transporter (ABC) G5. We used SHRSP/Izm, WKY/ NCrlCrlj, and WKY/Izm rats in the present study to determine the mechanisms for plant sterol deposition in the body. Jcl:Wistar rats were used as a control strain. A diet containing 0.5% plant sterols fed to the rats resulted in plant sterol deposition in the body of SHRSP/Izm, but not in WKY/Izm or Jcl:Wistar rats. Only a single non-synonymous nucleotide change, G1747T, resulting in a conservative cysteine substitution for glycine at amino acid 583 (Gly583Cys) in Abcg5 cDNA was identified in the SHRSP/Izm and WKY/ NCrlCrlj rats. However, this mutation was not found in the WKY/Izm or Jcl:Wistar rats. No significant difference in the biliary secretion or lymphatic absorption of plant sterols was apparent between the rat strains with or without the missense mutation in Abcg5 cDNA. Our observations suggest that plant sterol deposition in rat strains with the missense mutation in Abcg5 cDNA can occur, despite there being no significant change in the biliary secretion or lymphatic absorption of plant sterols.

Original languageEnglish
Pages (from-to)660-664
Number of pages5
JournalBioscience, Biotechnology and Biochemistry
Volume76
Issue number4
DOIs
Publication statusPublished - Apr 30 2012

Fingerprint

Phytosterols
Inbred WKY Rats
Missense Mutation
Rats
Complementary DNA
Wistar Rats
ATP-Binding Cassette Transporters
Inbred SHR Rats
Strain control
Oceans and Seas
Glycine
Cysteine
Nucleotides
Stroke
Nutrition
Diet
Amino Acids
Mutation
Substitution reactions

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Analytical Chemistry
  • Biochemistry
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Organic Chemistry

Cite this

SHRSP/Izm and WKY/NCrlCrlj rats having a missense mutation in Abcg5 deposited plant sterols in the body, but did not change their biliary secretion and lymphatic absorption-comparison with Jcl:Wistar and WKY/Izm rats. / Kato, Masaki; Ito, Yusuke; Tanaka, Yasutake; Sato, Masao; Imaizumi, Katsumi; Inoue, Nao; Ikeda, Ikuo.

In: Bioscience, Biotechnology and Biochemistry, Vol. 76, No. 4, 30.04.2012, p. 660-664.

Research output: Contribution to journalArticle

@article{177973f1aaed45678888b62d3ba0184c,
title = "SHRSP/Izm and WKY/NCrlCrlj rats having a missense mutation in Abcg5 deposited plant sterols in the body, but did not change their biliary secretion and lymphatic absorption-comparison with Jcl:Wistar and WKY/Izm rats",
abstract = "We had previously found plant sterols deposited in the bodies of stroke-prone spontaneously hypertensive rats (SHRSP)/Sea and Wistar Kyoto (WKY)/NCrlCrlj rats that had a missense mutation in the Abcg5 cDNA sequence that coded for ATP-binding cassette transporter (ABC) G5. We used SHRSP/Izm, WKY/ NCrlCrlj, and WKY/Izm rats in the present study to determine the mechanisms for plant sterol deposition in the body. Jcl:Wistar rats were used as a control strain. A diet containing 0.5{\%} plant sterols fed to the rats resulted in plant sterol deposition in the body of SHRSP/Izm, but not in WKY/Izm or Jcl:Wistar rats. Only a single non-synonymous nucleotide change, G1747T, resulting in a conservative cysteine substitution for glycine at amino acid 583 (Gly583Cys) in Abcg5 cDNA was identified in the SHRSP/Izm and WKY/ NCrlCrlj rats. However, this mutation was not found in the WKY/Izm or Jcl:Wistar rats. No significant difference in the biliary secretion or lymphatic absorption of plant sterols was apparent between the rat strains with or without the missense mutation in Abcg5 cDNA. Our observations suggest that plant sterol deposition in rat strains with the missense mutation in Abcg5 cDNA can occur, despite there being no significant change in the biliary secretion or lymphatic absorption of plant sterols.",
author = "Masaki Kato and Yusuke Ito and Yasutake Tanaka and Masao Sato and Katsumi Imaizumi and Nao Inoue and Ikuo Ikeda",
year = "2012",
month = "4",
day = "30",
doi = "10.1271/bbb.110667",
language = "English",
volume = "76",
pages = "660--664",
journal = "Bioscience, Biotechnology and Biochemistry",
issn = "0916-8451",
publisher = "Japan Society for Bioscience Biotechnology and Agrochemistry",
number = "4",

}

TY - JOUR

T1 - SHRSP/Izm and WKY/NCrlCrlj rats having a missense mutation in Abcg5 deposited plant sterols in the body, but did not change their biliary secretion and lymphatic absorption-comparison with Jcl:Wistar and WKY/Izm rats

AU - Kato, Masaki

AU - Ito, Yusuke

AU - Tanaka, Yasutake

AU - Sato, Masao

AU - Imaizumi, Katsumi

AU - Inoue, Nao

AU - Ikeda, Ikuo

PY - 2012/4/30

Y1 - 2012/4/30

N2 - We had previously found plant sterols deposited in the bodies of stroke-prone spontaneously hypertensive rats (SHRSP)/Sea and Wistar Kyoto (WKY)/NCrlCrlj rats that had a missense mutation in the Abcg5 cDNA sequence that coded for ATP-binding cassette transporter (ABC) G5. We used SHRSP/Izm, WKY/ NCrlCrlj, and WKY/Izm rats in the present study to determine the mechanisms for plant sterol deposition in the body. Jcl:Wistar rats were used as a control strain. A diet containing 0.5% plant sterols fed to the rats resulted in plant sterol deposition in the body of SHRSP/Izm, but not in WKY/Izm or Jcl:Wistar rats. Only a single non-synonymous nucleotide change, G1747T, resulting in a conservative cysteine substitution for glycine at amino acid 583 (Gly583Cys) in Abcg5 cDNA was identified in the SHRSP/Izm and WKY/ NCrlCrlj rats. However, this mutation was not found in the WKY/Izm or Jcl:Wistar rats. No significant difference in the biliary secretion or lymphatic absorption of plant sterols was apparent between the rat strains with or without the missense mutation in Abcg5 cDNA. Our observations suggest that plant sterol deposition in rat strains with the missense mutation in Abcg5 cDNA can occur, despite there being no significant change in the biliary secretion or lymphatic absorption of plant sterols.

AB - We had previously found plant sterols deposited in the bodies of stroke-prone spontaneously hypertensive rats (SHRSP)/Sea and Wistar Kyoto (WKY)/NCrlCrlj rats that had a missense mutation in the Abcg5 cDNA sequence that coded for ATP-binding cassette transporter (ABC) G5. We used SHRSP/Izm, WKY/ NCrlCrlj, and WKY/Izm rats in the present study to determine the mechanisms for plant sterol deposition in the body. Jcl:Wistar rats were used as a control strain. A diet containing 0.5% plant sterols fed to the rats resulted in plant sterol deposition in the body of SHRSP/Izm, but not in WKY/Izm or Jcl:Wistar rats. Only a single non-synonymous nucleotide change, G1747T, resulting in a conservative cysteine substitution for glycine at amino acid 583 (Gly583Cys) in Abcg5 cDNA was identified in the SHRSP/Izm and WKY/ NCrlCrlj rats. However, this mutation was not found in the WKY/Izm or Jcl:Wistar rats. No significant difference in the biliary secretion or lymphatic absorption of plant sterols was apparent between the rat strains with or without the missense mutation in Abcg5 cDNA. Our observations suggest that plant sterol deposition in rat strains with the missense mutation in Abcg5 cDNA can occur, despite there being no significant change in the biliary secretion or lymphatic absorption of plant sterols.

UR - http://www.scopus.com/inward/record.url?scp=84860111995&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860111995&partnerID=8YFLogxK

U2 - 10.1271/bbb.110667

DO - 10.1271/bbb.110667

M3 - Article

C2 - 22484926

AN - SCOPUS:84860111995

VL - 76

SP - 660

EP - 664

JO - Bioscience, Biotechnology and Biochemistry

JF - Bioscience, Biotechnology and Biochemistry

SN - 0916-8451

IS - 4

ER -