Silver Nanowire/Carbon Sheet Composites for Electrochemical Syngas Generation with Tunable H2/CO Ratios

Minhyung Cho, Ji Won Seo, Jun Tae Song, Jung Yong Lee, Jihun Oh

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Generating syngas (H2 and CO mixture) from electrochemically reduced CO2 in an aqueous solution is one of the sustainable strategies utilizing atmospheric CO2 in value-added products. However, a conventional single-component metal catalyst, such as Ag, Au, or Zn, exhibits potential-dependent CO2 reduction selectivity, which could result in temporal variation of syngas composition and limit its use in large-scale electrochemical syngas production. Herein, we demonstrate the use of Ag nanowire (NW)/porous carbon sheet composite catalysts in the generation of syngas with tunable H2/CO ratios having a large potential window to resist power fluctuation. These Ag NW/carbon sheet composite catalysts have a potential window increased by 10 times for generating syngas with the proper H2/CO ratio (1.7-2.15) for the Fischer-Tropsch process and an increased syngas production rate of about 19 times compared to that of a Ag foil. Additionally, we tuned the H2/CO ratio from 2 to 10 by adjusting only the quantity of the Ag NWs under the given electrode potential. We believe that our Ag NW/carbon sheet composite provides new possibilities for designing electrode structures with a large potential window and controlled CO2 reduction products in aqueous solutions.

Original languageEnglish
Pages (from-to)3441-3446
Number of pages6
JournalACS Omega
Volume2
Issue number7
DOIs
Publication statusPublished - Jul 31 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Silver Nanowire/Carbon Sheet Composites for Electrochemical Syngas Generation with Tunable H<sub>2</sub>/CO Ratios'. Together they form a unique fingerprint.

Cite this