Simple and two-level hierarchical bayesian approaches for parameter estimation with one-and two-layer evapotranspiration models of crop fields

Shutaro Shiraki, Aung Kyaw Thu, Yutaka Matsuno, Yoshiyuki Shinogi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The two-layer Shuttleworth–Wallace (SW) evapotranspiration (ET) model has been widely used for predicting ET with good results. Since the SW model has a large number of specific parameters, these parameters have been estimated using a simple non-hierarchical Bayesian (SB) approach. To further improve the performance of the SW model, we aimed to assess parameter estimation using a two-level hierarchical Bayesian (HB) approach that takes into account the variation in observed conditions through the comparison with a traditional one-layer Penman–Monteith (PM) model. The difference between the SB and HB approaches were evaluated using a field-based ET dataset collected from five agricultural fields over three seasons in Myanmar. For a calibration period with large variation in environmental factors, the models with parameters calibrated by the HB approach showed better fitting to observed ET than that with parameters estimated using the SB approach, indicating the potential importance of accounting for seasonal fluctuations and variation in crop growth stages. The validation of parameter estimation showed that the ET estimation of the SW model with calibrated parameters was superior to that of the PM model, and the SW model provided acceptable estimations of ET, with little difference between the SB and HB approaches.

Original languageEnglish
Article number3607
JournalWater (Switzerland)
Volume13
Issue number24
DOIs
Publication statusPublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Biochemistry
  • Aquatic Science
  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Simple and two-level hierarchical bayesian approaches for parameter estimation with one-and two-layer evapotranspiration models of crop fields'. Together they form a unique fingerprint.

Cite this