Simple valves on a pdms microchip bonded via patterned oxygen plasma

T. Kawai, H. Moriguchi, Y. Tanaka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The simplest form of microfluidic valve is proposed with detailed working mechanism. Conventional on-chip valves are requiring a multiple layers of microchip with complicated fluidic pattern and/or complicated external control system. In contrast, our developed valve can be fabricated in a bilayer microchip with a simple pattern, two channels and a wall separating them. Our valve fabrication was based on a plasma patterning method with a sacrificial aluminum layer, which shield the oxygen plasma activation only in the aimed position of the substrate. This approach is more robust than the conventional «plasma deactivation» approach based on the chemical patterning via micro-contact printing. For the valve regulation, no external control line is necessary but a weak pressure to the injection channel. Although our valve has no simpler structure than that of the hydrophobic valve which has ever been the simplest, our valve has a significant advantage in the repeatable utility. Due to its simplicity, moreover, long term injection more than 120 min was easily and precisely carried out. These highest simplicity and performance are quite suitable for the large integration and mass production of complicated lab-on-a-chip system for the application to biological research.

Original languageEnglish
Title of host publication2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1782-1785
Number of pages4
ISBN (Electronic)9781479989553
DOIs
Publication statusPublished - Aug 5 2015
Externally publishedYes
Event18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015 - Anchorage, United States
Duration: Jun 21 2015Jun 25 2015

Publication series

Name2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015

Other

Other18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2015
CountryUnited States
CityAnchorage
Period6/21/156/25/15

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Simple valves on a pdms microchip bonded via patterned oxygen plasma'. Together they form a unique fingerprint.

Cite this