TY - JOUR
T1 - Simultaneous estimation of projector and camera poses for multiple oneshot scan using pixel-wise correspondences estimated by U-Nets and GCN
AU - Furukawa, Ryo
AU - Mikamo, Michihiro
AU - Kawasaki, Hiroshi
AU - Sagawa, Ryusuke
AU - Oka, Shiro
AU - Kotachi, Takahiro
AU - Okamoto, Yuki
AU - Tanaka, Shinji
N1 - Publisher Copyright:
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2021
Y1 - 2021
N2 - Dense and accurate 3D shape acquisition of objects by active-stereo technique has been an important research topic and intensively researched. One of the promising fields for active-stereo techniques is medical applications, such as 3D endoscope systems. In such systems, since a sensor is dynamically moved during the operation, single-frame shape reconstruction, a.k.a. oneshot scan, is necessary. For oneshot scan, there are several open problems, such as low resolution because of spatial coding, and unstable correspondence estimation between the detected patterns and the projected pattern because of irregular reflection. In this paper, we propose a solution for those problems. To increase the resolution, an accurate and stable interpolation method based on deep neural networks (DNNs) is proposed. Since most patterns used for oneshot scan are periodic, pixel-wise phase estimation can be achieved by detecting repetition in the pattern. A graph convolutional network (GCN), which is a deep neural network for graphs, is used for the correspondence problem. In the experiment, pixel-wise shape reconstruction results, as well as robust correspondence estimation using DNNs and a GCN, are shown. In addition, the effectiveness of the techniques is confirmed by comparing the proposed method with existing methods.
AB - Dense and accurate 3D shape acquisition of objects by active-stereo technique has been an important research topic and intensively researched. One of the promising fields for active-stereo techniques is medical applications, such as 3D endoscope systems. In such systems, since a sensor is dynamically moved during the operation, single-frame shape reconstruction, a.k.a. oneshot scan, is necessary. For oneshot scan, there are several open problems, such as low resolution because of spatial coding, and unstable correspondence estimation between the detected patterns and the projected pattern because of irregular reflection. In this paper, we propose a solution for those problems. To increase the resolution, an accurate and stable interpolation method based on deep neural networks (DNNs) is proposed. Since most patterns used for oneshot scan are periodic, pixel-wise phase estimation can be achieved by detecting repetition in the pattern. A graph convolutional network (GCN), which is a deep neural network for graphs, is used for the correspondence problem. In the experiment, pixel-wise shape reconstruction results, as well as robust correspondence estimation using DNNs and a GCN, are shown. In addition, the effectiveness of the techniques is confirmed by comparing the proposed method with existing methods.
UR - http://www.scopus.com/inward/record.url?scp=85121398447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121398447&partnerID=8YFLogxK
U2 - 10.1080/21681163.2021.2009376
DO - 10.1080/21681163.2021.2009376
M3 - Article
AN - SCOPUS:85121398447
JO - Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization
JF - Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization
SN - 2168-1163
ER -