Simultaneous optimization of rotor blade and wind-lens for aerodynamic design of wind-lens turbine

Nobuhito Oka, Masato Furukawa, Kazutoyo Yamada, Kenta Kawamitsu, Kota Kido, Akihiro Oka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

An optimum aerodynamic design method for the new type of wind turbine called "wind-lens turbine" has been developed. The wind-lens turbine has a diffuser with brim called "wind-lens", by which the wind concentration on the turbine rotor and the significant enhancement of the turbine output can be achieved. In order to design efficient wind-lens turbines, an aerodynamic design method for the simultaneous optimization of rotor blade and wind-lens has been developed. The present optimum design method is based on a genetic algorithm (GA) and a quasi-three-dimensional design of turbine rotor. In the GA procedure, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used as evaluation and selection model. The Real-coded Ensemble Crossover (REX) is used as crossover model. The quasi-three-dimensional design consists of two parts: meridional viscous flow calculation and two-dimensional blade element design. In the meridional viscous flow calculation, an axisymmetric viscous flow is numerically analyzed on a meridional plane to determine the wind flow rate through the wind-lens and the spanwise distribution of the rotor inlet flow. In the two-dimensional rotor blade element design, the turbine rotor blade profile is determined by a one-dimensional through flow modeling for the wind-lens turbine and a two-dimensional blade element theory based on the momentum theorem of the ducted turbine. Total performances and three-dimensional flow fields of the optimized wind-lens turbines have been investigated by Reynolds averaged Navier-Stokes (RANS) simulations, in order to verify the present design method. The RANS simulations and the flow visualization have been applied to conventional and optimum design cases of the wind-lens turbine, in order to elucidate the relation between their aerodynamic performances and the flow fields around them. The numerical results show that separation vortices behind the wind-lens brim play a major role in the wind concentration and the diffuser performance of the wind-lens. As a result, it is found that the aerodynamic performance of wind-lens turbine is significantly affected by the interrelationship between the internal and external flow fields around the wind-lens.

Original languageEnglish
Title of host publicationASME Turbo Expo 2014
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2014
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791845660
DOIs
Publication statusPublished - Jan 1 2014
EventASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014 - Dusseldorf, Germany
Duration: Jun 16 2014Jun 20 2014

Publication series

NameProceedings of the ASME Turbo Expo
Volume3B

Other

OtherASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014
CountryGermany
CityDusseldorf
Period6/16/146/20/14

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Simultaneous optimization of rotor blade and wind-lens for aerodynamic design of wind-lens turbine'. Together they form a unique fingerprint.

Cite this