### Abstract

We have developed a method to analytically evaluate the relationship between the source-receiver configuration and the retrievedwavefield in seismic interferometry performed by multidimensional deconvolution (MDD). The MDD method retrieves thewavefield with the desired source-receiver configuration from the observed wavefield without source information. We used a singular-value decomposition (SVD) approach to solve the inverse problem of MDD. By introducing SVD into MDD, we obtained quantities that revealed the characteristics of the MDD inverse problem and interpreted the effect of the initial sourcereceiver configuration for a survey design. We numerically simulated the wavefield with a 2D model and investigated the rank of the incident field matrix of the MDD inverse problem. With a source array of identical length, a sparse and a dense source distribution resulted in an incident field matrix of the same rank and retrieved the same wavefield. Therefore, the optimum source distribution can be determined by analyzing the rank of the incident field matrix of the inverse problem. In addition, the introduction of scatterers into the model improved the source illumination and effectively increased the rank, enabling MDD to retrieve a better wavefield. We found that the ambiguity of the wavefield inferred from the model resolution matrix was a good measure of the amount of illumination of each receiver by the sources. We used the field data recorded at the two boreholes from the surface sources to support our results of the numerical modeling. We evaluated the rank of incident field matrix with the dense and sparse source distribution. We discovered that these two distributions resulted in an incident field matrix of almost the same rank and retrieved almost the same wavefield as the numerical modeling. This is crucial information for designing seismic experiments using the MDD-based approach.

Original language | English |
---|---|

Pages (from-to) | Q25-Q34 |

Journal | GEOPHYSICS |

Volume | 78 |

Issue number | 3 |

DOIs | |

Publication status | Published - Jan 1 2013 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Geochemistry and Petrology

### Cite this

*GEOPHYSICS*,

*78*(3), Q25-Q34. https://doi.org/10.1190/GEO2012-0245.1

**Singular-value decomposition analysis of source illumination in seismic interferometry by multidimensional deconvolution.** / Minato, Shohei; Matsuoka, Toshifumi; Tsuji, Takeshi.

Research output: Contribution to journal › Article

*GEOPHYSICS*, vol. 78, no. 3, pp. Q25-Q34. https://doi.org/10.1190/GEO2012-0245.1

}

TY - JOUR

T1 - Singular-value decomposition analysis of source illumination in seismic interferometry by multidimensional deconvolution

AU - Minato, Shohei

AU - Matsuoka, Toshifumi

AU - Tsuji, Takeshi

PY - 2013/1/1

Y1 - 2013/1/1

N2 - We have developed a method to analytically evaluate the relationship between the source-receiver configuration and the retrievedwavefield in seismic interferometry performed by multidimensional deconvolution (MDD). The MDD method retrieves thewavefield with the desired source-receiver configuration from the observed wavefield without source information. We used a singular-value decomposition (SVD) approach to solve the inverse problem of MDD. By introducing SVD into MDD, we obtained quantities that revealed the characteristics of the MDD inverse problem and interpreted the effect of the initial sourcereceiver configuration for a survey design. We numerically simulated the wavefield with a 2D model and investigated the rank of the incident field matrix of the MDD inverse problem. With a source array of identical length, a sparse and a dense source distribution resulted in an incident field matrix of the same rank and retrieved the same wavefield. Therefore, the optimum source distribution can be determined by analyzing the rank of the incident field matrix of the inverse problem. In addition, the introduction of scatterers into the model improved the source illumination and effectively increased the rank, enabling MDD to retrieve a better wavefield. We found that the ambiguity of the wavefield inferred from the model resolution matrix was a good measure of the amount of illumination of each receiver by the sources. We used the field data recorded at the two boreholes from the surface sources to support our results of the numerical modeling. We evaluated the rank of incident field matrix with the dense and sparse source distribution. We discovered that these two distributions resulted in an incident field matrix of almost the same rank and retrieved almost the same wavefield as the numerical modeling. This is crucial information for designing seismic experiments using the MDD-based approach.

AB - We have developed a method to analytically evaluate the relationship between the source-receiver configuration and the retrievedwavefield in seismic interferometry performed by multidimensional deconvolution (MDD). The MDD method retrieves thewavefield with the desired source-receiver configuration from the observed wavefield without source information. We used a singular-value decomposition (SVD) approach to solve the inverse problem of MDD. By introducing SVD into MDD, we obtained quantities that revealed the characteristics of the MDD inverse problem and interpreted the effect of the initial sourcereceiver configuration for a survey design. We numerically simulated the wavefield with a 2D model and investigated the rank of the incident field matrix of the MDD inverse problem. With a source array of identical length, a sparse and a dense source distribution resulted in an incident field matrix of the same rank and retrieved the same wavefield. Therefore, the optimum source distribution can be determined by analyzing the rank of the incident field matrix of the inverse problem. In addition, the introduction of scatterers into the model improved the source illumination and effectively increased the rank, enabling MDD to retrieve a better wavefield. We found that the ambiguity of the wavefield inferred from the model resolution matrix was a good measure of the amount of illumination of each receiver by the sources. We used the field data recorded at the two boreholes from the surface sources to support our results of the numerical modeling. We evaluated the rank of incident field matrix with the dense and sparse source distribution. We discovered that these two distributions resulted in an incident field matrix of almost the same rank and retrieved almost the same wavefield as the numerical modeling. This is crucial information for designing seismic experiments using the MDD-based approach.

UR - http://www.scopus.com/inward/record.url?scp=84885473816&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885473816&partnerID=8YFLogxK

U2 - 10.1190/GEO2012-0245.1

DO - 10.1190/GEO2012-0245.1

M3 - Article

VL - 78

SP - Q25-Q34

JO - Geophysics

JF - Geophysics

SN - 0016-8033

IS - 3

ER -