Size dependence of current-voltage properties in Coulomb blockade networks

Takayuki Narumi, Masaru Suzuki, Yoshiki Hidaka, Shoichi Kai

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

We theoretically investigate the current-voltage (I-V) property of two-dimensional Coulomb blockade (CB) arrays by conducting Monte Carlo simulations. The I-V property can be divided into three regions and we report the dependence of the aspect ratio δ (namely, the lateral size N y over the longitudinal one Nx). We show that the average CB threshold obeys a power-law decay as a function of δ. Its exponent γ corresponds to a sensitivity of the threshold depending on δ, and is inversely proportional to Nx (i.e., δ at fixed N y). Further, the power-law exponent ζ, characterizing the nonlinearity of the I-V property in the intermediate region, logarithmically increases as δ increases. Our simulations describe the experimental result ζ = 2:25 obtained by Parthasarathy et al. [Phys. Rev. Lett. 87 (2001) 186807]. In addition, the asymptotic I-V property of one-dimensional arrays obtained by Bascones et al. [Phys. Rev. B 77 (2008) 245422] is applied to two-dimensional arrays. The asymptotic equation converges to the Ohm's law at the large voltage limit, and the combined tunneling-resistance is inversely proportional to δ. The extended asymptotic equation with the first-order perturbation well describes the experimental result obtained by Kurdak et al. [Phys. Rev. B 57 (1998) R6842]. Based on our asymptotic equation, we can estimate physical values that it is hard to obtain experimentally.

Original languageEnglish
Article number114704
Journaljournal of the physical society of japan
Volume80
Issue number11
DOIs
Publication statusPublished - Nov 1 2011

Fingerprint

electric potential
exponents
Ohms law
thresholds
aspect ratio
simulation
nonlinearity
conduction
perturbation
sensitivity
decay
estimates

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Size dependence of current-voltage properties in Coulomb blockade networks. / Narumi, Takayuki; Suzuki, Masaru; Hidaka, Yoshiki; Kai, Shoichi.

In: journal of the physical society of japan, Vol. 80, No. 11, 114704, 01.11.2011.

Research output: Contribution to journalArticle

@article{bead1003128847fd98e4b6bd9ef0144d,
title = "Size dependence of current-voltage properties in Coulomb blockade networks",
abstract = "We theoretically investigate the current-voltage (I-V) property of two-dimensional Coulomb blockade (CB) arrays by conducting Monte Carlo simulations. The I-V property can be divided into three regions and we report the dependence of the aspect ratio δ (namely, the lateral size N y over the longitudinal one Nx). We show that the average CB threshold obeys a power-law decay as a function of δ. Its exponent γ corresponds to a sensitivity of the threshold depending on δ, and is inversely proportional to Nx (i.e., δ at fixed N y). Further, the power-law exponent ζ, characterizing the nonlinearity of the I-V property in the intermediate region, logarithmically increases as δ increases. Our simulations describe the experimental result ζ = 2:25 obtained by Parthasarathy et al. [Phys. Rev. Lett. 87 (2001) 186807]. In addition, the asymptotic I-V property of one-dimensional arrays obtained by Bascones et al. [Phys. Rev. B 77 (2008) 245422] is applied to two-dimensional arrays. The asymptotic equation converges to the Ohm's law at the large voltage limit, and the combined tunneling-resistance is inversely proportional to δ. The extended asymptotic equation with the first-order perturbation well describes the experimental result obtained by Kurdak et al. [Phys. Rev. B 57 (1998) R6842]. Based on our asymptotic equation, we can estimate physical values that it is hard to obtain experimentally.",
author = "Takayuki Narumi and Masaru Suzuki and Yoshiki Hidaka and Shoichi Kai",
year = "2011",
month = "11",
day = "1",
doi = "10.1143/JPSJ.80.114704",
language = "English",
volume = "80",
journal = "Journal of the Physical Society of Japan",
issn = "0031-9015",
publisher = "Physical Society of Japan",
number = "11",

}

TY - JOUR

T1 - Size dependence of current-voltage properties in Coulomb blockade networks

AU - Narumi, Takayuki

AU - Suzuki, Masaru

AU - Hidaka, Yoshiki

AU - Kai, Shoichi

PY - 2011/11/1

Y1 - 2011/11/1

N2 - We theoretically investigate the current-voltage (I-V) property of two-dimensional Coulomb blockade (CB) arrays by conducting Monte Carlo simulations. The I-V property can be divided into three regions and we report the dependence of the aspect ratio δ (namely, the lateral size N y over the longitudinal one Nx). We show that the average CB threshold obeys a power-law decay as a function of δ. Its exponent γ corresponds to a sensitivity of the threshold depending on δ, and is inversely proportional to Nx (i.e., δ at fixed N y). Further, the power-law exponent ζ, characterizing the nonlinearity of the I-V property in the intermediate region, logarithmically increases as δ increases. Our simulations describe the experimental result ζ = 2:25 obtained by Parthasarathy et al. [Phys. Rev. Lett. 87 (2001) 186807]. In addition, the asymptotic I-V property of one-dimensional arrays obtained by Bascones et al. [Phys. Rev. B 77 (2008) 245422] is applied to two-dimensional arrays. The asymptotic equation converges to the Ohm's law at the large voltage limit, and the combined tunneling-resistance is inversely proportional to δ. The extended asymptotic equation with the first-order perturbation well describes the experimental result obtained by Kurdak et al. [Phys. Rev. B 57 (1998) R6842]. Based on our asymptotic equation, we can estimate physical values that it is hard to obtain experimentally.

AB - We theoretically investigate the current-voltage (I-V) property of two-dimensional Coulomb blockade (CB) arrays by conducting Monte Carlo simulations. The I-V property can be divided into three regions and we report the dependence of the aspect ratio δ (namely, the lateral size N y over the longitudinal one Nx). We show that the average CB threshold obeys a power-law decay as a function of δ. Its exponent γ corresponds to a sensitivity of the threshold depending on δ, and is inversely proportional to Nx (i.e., δ at fixed N y). Further, the power-law exponent ζ, characterizing the nonlinearity of the I-V property in the intermediate region, logarithmically increases as δ increases. Our simulations describe the experimental result ζ = 2:25 obtained by Parthasarathy et al. [Phys. Rev. Lett. 87 (2001) 186807]. In addition, the asymptotic I-V property of one-dimensional arrays obtained by Bascones et al. [Phys. Rev. B 77 (2008) 245422] is applied to two-dimensional arrays. The asymptotic equation converges to the Ohm's law at the large voltage limit, and the combined tunneling-resistance is inversely proportional to δ. The extended asymptotic equation with the first-order perturbation well describes the experimental result obtained by Kurdak et al. [Phys. Rev. B 57 (1998) R6842]. Based on our asymptotic equation, we can estimate physical values that it is hard to obtain experimentally.

UR - http://www.scopus.com/inward/record.url?scp=80755125891&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80755125891&partnerID=8YFLogxK

U2 - 10.1143/JPSJ.80.114704

DO - 10.1143/JPSJ.80.114704

M3 - Article

AN - SCOPUS:80755125891

VL - 80

JO - Journal of the Physical Society of Japan

JF - Journal of the Physical Society of Japan

SN - 0031-9015

IS - 11

M1 - 114704

ER -