Abstract
The sliding wear behaviours of an unreinforced monolithic Al-Si-Cu alloy and SiC particles reinforced composites containing 5, 13, 38 and 50 vol.-% with diameters of 5·5, 11·5 and 57 μm were investigated. The results showed that the wear resistance of the composites is much higher than the monolithic alloy, and the larger and the more SiC particles, the higher the enhancement of the wear resistance. Metallographic examinations revealed that the subsurface of worn composites was composed of both fragmented particles and deformed matrix alloy. The depth of the particle fracture zone in the subsurface varied in the range of 20-35 μm at a sliding distance of 1·8 km, while the plastic deformation zone of the worn subsurface on monolithic alloy was more than 100 μm. Scanning electron microanalyses of the worn surface, subsurface microstructure and debris suggested that the depth of the particle fracture zone became smaller as the diameter of SiC particles increased. Increasing the hardness and decreasing the applied wear stress changed the debris morphology from flake to very small lumps.
Original language | English |
---|---|
Pages (from-to) | 1519-1526 |
Number of pages | 8 |
Journal | Materials Science and Technology |
Volume | 19 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 1 2003 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering