Sn-Cu alloy electrodeposition and its connecting reliability for automotive connectors

Hiroaki Nakano, Satoshi Oue, Daisuke Yoshihara, Hisaaki Fukushima, Yoshifumi Saka, Shigeru Sawada, Yasuhiro Hattori

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The electrodeposition behavior of Sn-Cu alloys in a sulfate solution containing three additives, cresol sulfonic acid, benzal acetone, and nonionic alkyl polyethylene glycol ether surfactant, was investigated potentiostatically between +0.3 and-0.7 V vs. NHE at 298 K. The contact resistance of the alloys deposited on a Cu connector was evaluated. Cu in the alloys behaved as a more noble metal than did Sn, thus showing the typical feature of regular-type codeposition. In solutions containing additives, the difference in deposition potential between Cu and Sn decreased because Cu deposition was significantly suppressed by the additives. The alloys deposited in solutions containing additives exhibited smooth surfaces and were composed of Cu, Sn, Cu 6Sn5, and Cu3 Sn phases in accordance with the equilibrium phase diagram of a binary Cu-Sn system. The contact resistance of the alloys increased by heating at 433 K, thus indicating that connecting reliability did not improve by plating with the stable metallic compound Cu 6Sn5. The connecting reliability of a connector after abrasion was higher in deposited alloy films than in Sn reflow plating.

Original languageEnglish
Pages (from-to)1237-1243
Number of pages7
JournalMaterials Transactions
Volume52
Issue number6
DOIs
Publication statusPublished - Jun 2011

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Sn-Cu alloy electrodeposition and its connecting reliability for automotive connectors'. Together they form a unique fingerprint.

Cite this