SOFC durability against standby and shutdown cycling

M. Hanasaki, C. Uryu, T. Daio, T. Kawabata, Y. Tachikawa, S. M. Lyth, Y. Shiratori, S. Taniguchi, K. Sasaki

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

To simulate realistic operating conditions in SOFC systems, we investigate the influence of thermal cycling on the performance of electrolyte-supported planar SOFCs. Thermal cycling is often associated with interruption of fuel supply, with three main modes; hot standby, cold standby, and shutdown. Cell performance degradation is most significant during shutdown cycles. Nickel oxidation and agglomeration are more pronounced when SOFCs are subjected to lower temperatures for longer periods of time, leading to significant performance degradation. Ostwald ripening at the anode leads to degradation as Ni grains increase in size with cycling. Ni particle precipitation on the anode zirconia grains and along electrolyte grain boundaries is found for the first time in shutdown cycling tests. When H2S is mixed with the fuel, the internal reforming reactions and electrode reactions are inhibited by sulfur poisoning of the Ni anodes, accelerating degradation. The SOFC cycling degradation mechanisms are discussed in detail.

Original languageEnglish
Pages (from-to)F850-F860
JournalJournal of the Electrochemical Society
Volume161
Issue number9
DOIs
Publication statusPublished - 2014

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'SOFC durability against standby and shutdown cycling'. Together they form a unique fingerprint.

  • Cite this