Solar Thermal-Powered Adsorption Chiller

Mahbubul Muttakin, Kazuhide Ito, Bidyut Baran Saha

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Citation (Scopus)

Abstract

Adsorption based cooling systems are gaining considerable attention since it can utilize low grade thermal energy, which otherwise could go as a waste. Heat sources possessing a temperature of as low as 60 °C can drive an adsorption chiller and that temperature requirement is even lower in the case of multi-stage adsorption cooling systems. A typical flat plate solar collector can provide hot water having a temperature of 65 °C in most of the countries in the Asian region. The temperature of evacuated tube collectors’ water outlet can reach above 95 °C. In order to make use of such collectors, in conjunction with other auxiliary heat sources, for providing heat to power an adsorption chiller, it is imperative to have a proper mathematical model. This can aid in designing the network and predicting the performance of the whole system, prior to installation. This chapter focuses on the modelling of a system that incorporates flat plate collectors, evacuated tube collectors and a thermally powered adsorption chiller. Here, mathematical equations to calculate the efficiency of flat plate and evacuated tube collectors are presented; processes that are involved in a typical two bed adsorption cooling system are explained in brief, and a mathematical model of an adsorption chiller, that employs mass and heat recovery schemes is developed. Finally, the simulation results of the model are presented, and the performance of the chiller is investigated to demonstrate a clear understanding of its operation.

Original languageEnglish
Title of host publicationEnergy, Environment, and Sustainability
PublisherSpringer Nature
Pages117-146
Number of pages30
DOIs
Publication statusPublished - 2020

Publication series

NameEnergy, Environment, and Sustainability
ISSN (Print)2522-8366
ISSN (Electronic)2522-8374

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Automotive Engineering
  • Environmental Engineering

Fingerprint Dive into the research topics of 'Solar Thermal-Powered Adsorption Chiller'. Together they form a unique fingerprint.

Cite this