Solid solution hardening in supersaturated AlMgSi alloy

Ken Takata, Kohsaku Ushioda, Kenji Kaneko, Ryutaro Akiyoshi, Ken ichi Ikeda, Satoshi Hata, Hideharu Nakashima

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The yield strength and work hardening of AlMgSi alloys are related to the concentration of solute atoms. This study was carried out to clarify the effect of two kinds of solute atoms on these properties in terms of a linear combination of contributions from a solid solution. Tensile tests were conducted with Al and with Al0.62Mg0.32Si, Al0.65Mg0.81Si, Al2.4Mg, and Al4.4Mg (mass%) alloys in solid solution. Work hardening was analyzed using the KocksMecking model, yielding two parameters which indicate the storage and recovery of dislocations in the material. The yield strength could not be expressed as a linear combination of solute atom concentrations, but the amount of dislocation storage and dynamic recovery could be expressed as such linear combinations. In the high-strain region, the KocksMecking model no longer applies, and the maximum stress at which the model failed increased with increasing concentrations of solute atoms. It is generally known that an interaction between strain fields around solute atoms and quenched-in vacancies can affect the yield strength owing to dislocation motion and that these atoms can retard the development of microstructures in high-strain regions. A linear combination of contributions from solid solutions is possible only for the storage and recovery of dislocations in the low-strain region.

Original languageEnglish
Pages (from-to)2525-2529
Number of pages5
JournalMaterials Transactions
Volume60
Issue number12
DOIs
Publication statusPublished - 2019

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Solid solution hardening in supersaturated AlMgSi alloy'. Together they form a unique fingerprint.

Cite this