Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture

Shintaro Nakamura, Hiroyuki Ijima

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Tissue engineering requires growth factors, cells and a scaffold to permit effective tissue regeneration. This study focused on the development of a scaffold for liver tissue engineering, because the liver is a central organ for metabolism. We aimed to develop a scaffold to promote expression of liver-specific functions of hepatocytes, with a focus on immobilizing growth factors onto an organ-specific matrix for liver tissue regeneration. Solubilized extracellular matrix from decellularized liver (L-ECM) was obtained following Triton X-100 treatment and consisted of protein and polysaccharide. L-ECM was found to immobilize hepatocyte growth factor (HGF), even in the presence of albumin, with an efficiency of 75%. Additionally, the immobilized HGF on L-ECM film was stably remained in culture condition for 5 days. Immobilized HGF promoted hepatocyte migration, thus indicating that L-ECM-immobilized HGF maintained its native biological activity. Furthermore, L-ECM stimulated the expression of liver-specific functions, including albumin secretion, urea synthesis and ethoxyresorufin-O-deethylase activity, in primary rat hepatocytes cultured in growth factor-free medium. In summary, L-ECM has the potential to become an effective material in the field of regenerative medicine.

Original languageEnglish
Pages (from-to)746-753
Number of pages8
JournalJournal of Bioscience and Bioengineering
Volume116
Issue number6
DOIs
Publication statusPublished - Dec 2013

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Fingerprint Dive into the research topics of 'Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture'. Together they form a unique fingerprint.

Cite this